Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Persistent currents in superfluid3He

  • 56 Accesses

  • 26 Citations

Abstract

Measurements are reported of persistent currents in superfluid3He-B and3He-A. An ac gyroscope filled with 20 µm powder and mounted into a rotating nuclear refrigerator was employed. In3He-B, undiminished circulation was observed for 48 h; this implies an effective viscosity at least 12 orders of magnitude lower than in the normal fluid at the same temperature. AtP<15 bar, the observed critical velocity is independent of temperature but it is a weak function of pressure;v c varies between 4 and 6 mm/sec. The response to rotation is hysteretic, with elastic potential flow at slow rotation and irreversible vortex flow at higher angular velocities. The persistent angular momentumL is reversible when thermally cycled in the B phase, and proportional to the superfluid fraction ρ s /ρ. Above 15 bar the B phase splits into separate regions with different critical velocities. The measuredv c in the phase existing only at high pressures is dependent on magnetic field; for example, at 23.0 bar,v c (H=0) =5 mm/sec, butv c (H=40 G) =15 mm/sec. In the low pressure phase,v c is insensitive to a change in the magnetic field. The phase transition is of first order; the latent heatQ G (≈1 µJ/mole) depends on the maximum angular velocity at which the cryostat was rotated. The transition is proposed to occur in the core structure of pinned quantized vortices sustaining persistent currents. In3He-A, currents could not be found to persist on an observable level. Direct measurements ofL atH=0 and atH=40 G, and repeated thermal cycling, showed that either the current decays rapidly orv c <0.5 mm/sec.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    A. J. Dahm, D. S. Betts, D. F. Brewer, J. Hutchins, J. Saunders, and W. S. Truscott,Phys. Rev. Lett. 45, 1411 (1980).

  2. 2.

    J. M. Parpia and J. D. Reppy,Phys. Rev. Lett. 43, 1332 (1979).

  3. 3.

    J. P. Eisenstein and R. E. Packard,Phys. Rev. Lett. 49, 564 (1982).

  4. 4.

    M. T. Manninen and J. P. Pekola,Phys. Rev. Lett. 48, 812, 1369 (E); M. T. Manninen and J. P. Pekola,J. Low Temp. Phys. 52, 497 (1983).

  5. 5.

    M. T. Manninen, J. P. Pekola, R. G. Sharma, and M. S. Tagirov,Phys. Rev. B 26, 5233 (1982).

  6. 6.

    M. A. Paalanen and D. D. Osheroff,Phys. Rev. Lett. 45, 362 (1980).

  7. 7.

    P. L. Gammel, H. E. Hall, and J. D. Reppy,Phys. Rev. Lett. 52, 121 (1984).

  8. 8.

    J. P. Pekola, J. T. Simola, K. K. Nummila, O. V. Lounasmaa, and R. E. Packard,Phys. Rev. Lett. 53, 70 (1984).

  9. 9.

    J. P. Pekola, J. T. Simola, P. J. Hakonen, M. Krusius, O. V. Lounasmaa, K. K. Nummila, G. Mamniashvili, R. E. Packard, and G. E. Volovik,Phys. Rev. Lett. 53, 584 (1984).

  10. 10.

    J. P. Pekola, J. T. Simola, K. K. Nummila, O. V. Lounasmaa, and R. E. Packard, inProc. LT-17. U. Eckern et al., eds. (North-Holland, New York, 1984), p. 35.

  11. 11.

    A. L. Fetter, inThe Physics of Liquid and Solid Helium, Part I, K. H. Bennemann and J. B. Ketterson, eds. (Wiley, New York, 1976), p. 207.

  12. 12.

    P. Bhattacharya, T.-L. Ho, and N. D. Mermin,Phys. Rev. Lett. 39, 1290 (1977).

  13. 13.

    A. L. Fetter,Phys. Rev. Lett. 40, 1656 (1978).

  14. 14.

    P. J. Hakonen, O. T. Ikkala, S. T. Islander, T. K. Markkula, P. M. Roubeau, K. M. Saloheimo, D. I. Garibashvili, and J. S. Tsakadze,Cryogenics 23, 243 (1983).

  15. 15.

    P. J. Hakonen, M. Krusius, G. Mamniashvili, and J. T. Simola, inProc. LT-17. U. Eckern et al., eds. (North-Holland, New York, 1984), p. 49.

  16. 16.

    I. Rudnick, H. Kojima, W. Veith, and R. S. Kagiwada,Phys. Rev. Lett. 23, 1220 (1969).

  17. 17.

    H. Kojima, Ph.D. Thesis, University of California at Los Angeles (1972).

  18. 18.

    J. S. Marcus, Ph.D. Thesis, University of California at Los Angeles (1982).

  19. 19.

    J. D. Reppy,Phys. Rev. Lett. 14, 733 (1965).

  20. 20.

    J. R. Clow and J. D. Reppy,Phys. Rev. Lett. 19, 291 (1967).

  21. 21.

    J. S. Langer and J. D. Reppy, inProgress in Low Temperature Physics, Vol. VI, C. J. Gorter, ed. (North-Holland, Amsterdam, 1970), p. 34.

  22. 22.

    J. Heiserman, Ph.D. Thesis, University of California at Los Angeles (1975).

  23. 23.

    K. Magnus,Kreisel (Springer, 1971), p. 49.

  24. 24.

    J. P. Pekola, J. T. Simola, and K. K. Nummila,Proc. ICEC10 (1984), to be published.

  25. 25.

    M. T. Huiku, T. A. Jyrkkiö, M. T. Loponen, and O. V. Lounasmaa, inQuantum Fluids and Solids—1983, E. D. Adams and G. G. Ihas, eds. (American Institute of Physics, New York, 1983), p. 441.

  26. 26.

    C. N. Archie, T. A. Alvesalo, J. D. Reppy, and R. C. Richardson,Phys. Rev. Lett. 43, 139 (1979).

  27. 27.

    H. Lamb,Hydrodynamics (Dover, 1945), pp. 85, 124.

  28. 28.

    A. L. Fetter,Phys. Rev. B 29, 5182 (1984).

  29. 29.

    S. V. Iordanskii,Zh. Eksp. Teor. Fiz. 48, 708 (1965);Sov. Phys. JETP 21, 467 (1965).

  30. 30.

    J. S. Langer and M. E. Fisher,Phys. Rev. Lett. 19, 560 (1967).

  31. 31.

    S. J. Puttermann,Superfluid Hydrodynamics (North-Holland, 1974), pp. 255–262.

  32. 32.

    G. Kukich, R. P. Henkel, and J. D. Reppy,Phys. Rev. Lett. 21, 197 (1968).

  33. 33.

    O. T. Ikkala, G. E. Volovik, P. J. Hakonen, Yu. M. Bunkov, S. T. Islander, and G. A. Kharadze,Pis'ma Zh. Eksp. Teor. Fiz. 35, 338 (1982);JETP Lett. 35, 416 (1982).

  34. 34.

    P. J. Hakonen, O. T. Ikkala, S. T. Islander, O. V. Lounasmaa, and G. E. Volovik,J. Low Temp. Phys. 53, 425 (1983).

  35. 35.

    Ren-Zhi Ling, D. S. Betts, and D. F. Brewer,Phys. Rev. Lett. 53, 930 (1984).

  36. 36.

    T. A. Alvesalo, T. Haavasoja, and M. T. Manninen,J. Low Temp. Phys. 45, 373 (1981).

  37. 37.

    D. D. Awschalom and K. W. Schwarz,Phys. Rev. Lett. 52, 49 (1984).

  38. 38.

    M. M. Salomaa and G. E. Volovik,Phys. Rev. Lett. 51, 2040 (1983).

  39. 39.

    M. M. Salomaa and G. E. Volovik,Phys. Rev. B, submitted.

  40. 40.

    R. Bruinsma and K. Maki,J. Low Temp. Phys. 37, 607 (1979).

  41. 41.

    A. J. Leggett,Rev. Mod. Phys. 47, 331 (1975).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pekola, J.P., Simola, J.T. Persistent currents in superfluid3He. J Low Temp Phys 58, 555–590 (1985). https://doi.org/10.1007/BF00681144

Download citation

Keywords

  • Vortex
  • Angular Velocity
  • Critical Velocity
  • Core Structure
  • Potential Flow