Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Historical loading record of sulfur in an Adirondack Lake

  • 30 Accesses

  • 1 Citations


A model for the distribution of sulfur in the sediments of a lake in the Adirondack Mountains, New York, is developed to gain insight into the timing and magnitude of anthropogenic increases in sulfur loading. Surficial sulfur concentrations are about 3500 µg g−1, increase to 6000–7000 µg g−1 at a depth of about 6 cm, and then decrease downcore to background levels of about 2500 µg g−1. Sulfate concentrations are about 60–80 µM in the overlying water and decrease rapidly below the sediment-water interface. This reflects assimilatory reduction and/or dissimilatory reduction of sulfate and incorporation into the inorganic and/or organic solid-phase fractions of the sediment. A mathematical model is constructed assuming sulfur is incorporated into sediments by burial of detrital organic matter and by diffusion of sulfate from the overlying water with subsequent fixation in the sediment. Several historical scenarios of atmospheric sulfate loading rates were examined as model boundary conditions. Model results are compared with observed sedimentary sulfur profiles. The observed sediment sulfur profiles are best described using model boundary conditions showing increases in lake water sulfate concentrations since about 1940. Assuming as much as a decade of retention of sulfate within the terrestrial portion of the ecosystem, this suggests that significant increases in sulfate deposition rates began sometime after 1930 in this relatively remote area.

This is a preview of subscription content, log in to check access.


  1. Batterbee, R. W., J. P. Smol & J. Merilainen, 1986. Diatoms as indicators of pH: An historical review. In Smol, Battarbee, Davis & Merilainen (eds.) Diatoms and Lake Acidity, Dr W. Junk; Dordrecht, The Netherlands: 5–14.

  2. Berner, R. A., 1974. Kinetic models for the early diagenesis of nitrogen, sulfur phosphorous and silicon in anoxic marine sediments. In E. D. Goldberg (ed.) The Sea 5, Marine Chemistry. Wiley Interscience, New York: 427–450.

  3. Berner, R. A., 1980. Early Diagenesis: A Theoretical Approach. Princeton University Press, Princeton.

  4. Binford, M. W., 1990. Calculation and uncertainty analysis of210Pb dates for PIRLA Project sediment cores. J. Paleolim. 3: 253–267.

  5. Brakke, D. F., R. B. Davis & K. H. Kenlan, 1984. Acidification and changes over time in the chydorid Cladocera assemblage of New England lakes. In G. R. Hendrey (ed.) Early biotic responses to advancing lake acidification. Ann Arbor Publ., Boston: Ch. 5, 85–104.

  6. Brown, S. R., 1969. Paleolimnologic evidence from fossil pigments. Mitt. int. Ver. Limnol. 17: 95–103.

  7. Brunelle, T. M., 1984, Non-steady-state sulfur diagenesis in soft-water lakes: An ihitial investigation. M.S. Thesis, University of Rochester, Rochester, N.Y.: 109 pp.

  8. Carignan, R. & A. Tessier, 1988. The co-diagenesis of sufur and iron in acid lake sediments of Southwestern Quebec. Geochim. Cosmochim. Acta 52: 1179–1188.

  9. Charles, D. F. & S. A. Norton, 1986. Paleolimnological evidence for trends in atmospheric deposition of acids and metals. In (Committee on Monitoring and Assessment of Trends in Acid Deposition) Acid Deposition: Long-term Trends, National Academy Press, Washington, D.C.: 335–431.

  10. Church, M. R., K. W. Thornton, P. W. Shaffer, D. L. Stevens, Jr., B. P. Rochelle, G. R. Holdren, Jr., M. G. Johnson, J. J. Lee, R. S. Turner, D. L. Cassell, D. A. Lammers, W. G. Campbell, C. I. Liff, C. C. Brandt, L. H. Liegel, G. D. Bishop, D. C. Mortenson, S. M. Pierson & D. D. Schmoyer, 1989. Direct/delayed response project: Future effects of long-term sulfur deposition on surface water chemistry in the Northeast and Southern Blue Ridge Province: EPA/600/3-89/061a–d. U.S. Environmental Protection Agency, Washington, D.C.: 887 pp.

  11. Cline, J. D., 1969. Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol. Oceanogr. 14: 454–458.

  12. Cook, R. B. & D. W. Schindler, 1983. The biogeochemistry of sulfur in an experimentally acidified lake. Ecol. Bull. 35: 115–127.

  13. Davis, A. O., J. N. Galloway & D. K. Nordstrom, 1982. Lake acidification: Its effect on lead in the sediment of two Adirondack lakes. Limnol. Oceanogr. 27: 163–167.

  14. Fisher, J. B., G. Matisoff & W. J. Lick, 1982. Downcore variation in sediment organic nitrogen. Nature 296: 345–347.

  15. Goldhaber, M. B. & I. R. Kaplan, 1974. The sulfur cycle. In E. D. Goldberg (ed.) The Sea 5, Marine Chemistry, Wiley Interscience, New York.

  16. Goldhaber, M. B., R. C. Aller, J. K. Cochran, J. K. Rosenfeld, C. S. Martens & R. A. Berner, 1977. Sulfate reduction, diffusion, and bioturbation in Long Island Sound sediments: Report of the FOAM Group. Amer. J. Sci. 277: 193–237.

  17. Heit, M., Y. Tan, C. Klusek & J. C. Burke, 1981. Anthropogenic trace elements and polycyclic aromatic hydrocarbon levels in sediment cores from two lakes in the Adirondack acid lake region. Wat. Air Soil Pollut. 15: 441–464.

  18. Hesslein, R. H., 1976. Anin situ sampler for close interval pore water studies. Limnol. Oceanogr. 21: 912–914.

  19. Hites, R. A., 1981. Sources and fates of atmospheric polycyclic aromatic hydrocarbons. Amer. Chem. Soc. Symp. Ser. 167: 187–196.

  20. Holdren, G. R., T. M. Brunelle, G. Matisoff & M. Whalen, 1984. Timing the increase in atmospheric sulphur deposition in the Adirondack Mountains. Nature 311: 245–248.

  21. Husar, R. B., T. J. Sullivan & D. F. Charles, 1991. Historical trends in atmospheric sulfur deposition and methods for assessing long-term trends in surface water chemistry. In D. F. Charles (ed.) Acidic Deposition and Aquatic Ecosystems: Regional Case Studies Springer-Verlag, New York: 65–82.

  22. Kahl, J. S., 1982. Present and inferred historical atmospheric deposition of heavy metals in 2 eastern Maine sites. Northeast Environ. Sci. 1(3–4): 170–175.

  23. Kahl, J. S., S. A. Norton & J. S. Williams, (1982) 1984. Chronology, magnitude and paleolimnological record of changing metal fluxes related to atmospheric deposition of acids and metals in New England. In O. P. Bricker III (ed.) Acid Precipitation Series, Vol. VII, Proc. Symp. Acid Precip., Amer. Chem. Soc. Meeting: 23–35.

  24. Kelly, C. A. & J. W. M. Rudd, 1989. Reply to comment by Urban and Baker. Limnol. Oceanogr. 34: 1146–1168.

  25. Kelly, C. A., J. W. M. Rudd, R. G. Cook & D. W. Schindler, 1982. The potential importance of bacterial processes in regulating rate of lake acidification. Limnol. Oceanogr. 25: 868–882.

  26. Kramer, J. R., A. W. Andren, R. A. Smith, A. H. Johnson, R. B. Alexander & G. Oehlert, 1986. Streams and lakes. In: Acid Deposition: Long-term Trends (National Research Council Committee on Monitoring and Assessment of Trends in Acid Deposition). National Academy Press, Washington, D.C.: 231–299.

  27. Li, Y. H. & S. Gregory, 1974. Diffusion of ions in seawater and in deep-sea sediments. Geochim. Cosmochim. Acta 38: 703–714.

  28. Likens, G. E., F. H. Bormann, N. M. Johnson, D. W. Fisher & R. S. Price, 1970. Effects of forest cutting and herbicide treatment on nutrient budgets in the Hubbard Brook watershed-ecosystem. Ecol. Monogr. 40: 23–47.

  29. Likens, G. E., F. H. Bormann, R. S. Pierce, J. S. Eaton & N. M. Johnson, 1977. Biogeochemistry of a Forested Ecosytem: Input-output budgets. Springer-Verlag, New York: 65–86.

  30. Likens, G. E. & T. J. Butler, 1981. Recent acidification of precipitation in North America: Atmos. Environ. 15: 1103–1109.

  31. Matisoff, G., 1982. Mathematical models of bioturbation. In P. L. McCall & M. J. Tevesz (eds.) Animal-Sediment Relations: The Biotic Alteration of Sediments. Plenem: 289–331.

  32. Matisoff, G., J. B. Fisher & P. L. McCall, 1981. Kinetics of nutrient and metal releases from decomposing lake sediments. Geochim. Cosmochim. Acta 45: 2333–2347.

  33. Mayewski, P. A., W. B. Lyons, M. J. Spencer, M. Twickler, W. Dansgaard, B. Koci, C. I. Davidson, R. E. Honrath, 1986. Sulfate and nitrate concentrations from a south Greenland ice core. Science 232: 975–977.

  34. Mayewski, P. A., W. B. Lyons, M. J. Spencer, M. S. Twickler, C. F. Buck & S. Whitlow. 1990. An ice-core record of atmospheric response to anthropogenic sulphate and nitrate. Nature 346: 554–556.

  35. Mitchell, M. J., D. H. Landers & D. F. Brodowski, 1981. Sulfur constituents of sediments and their relationship to lake acidification. Wat. Air Soil Pollut. 16: 351–359.

  36. Mitchell, M. J., S. C. Schindler, J. S. Owen & S. A. Norton, 1988. Comparison of sulfur concentrations within lake sediment profiles. Hydrobiologia 157: 219–229.

  37. Norton, S. A., M. J. Mitchell, J. S. Kahl & G. F. Brewer, 1988. In-lake alkalinity generation by sulfate reduction — A paleolimnological assessment. Wat. Air Soil Pollut. 39: 33–45.

  38. Nriagu, J. O. & Y. K. Soon, 1985. Distribution and isotopic composition of sulfur in lake sediments of northern Ontario. Geochim. Cosmochim. Acta. 49: 823–834.

  39. Peck, H. D. Jr., 1962. Symposium on metabolism of inorganic compounds: V. Comparitive metabolism of inorganic sulfur compounds in microorganisms. Bact. Rev. 26: 67–94.

  40. Postgate, J. R., 1968. The sulfur cycle. In G. Nickless (ed.) Inorganic Sulfur Chemistry. Elsevier Publishing Co., New York.

  41. Renberg, I. & M. Wik, 1984. Dating recent lake sediments by soot particle counting. Verh. int. Ver. Limnol. 22.

  42. Robbins, J. A., 1978. In J. O. Nriagu (ed.) Biogeochemistry of Lead. Elsevier, Amsterdam.

  43. Robbins, J. A., 1986. A model for particle selective transport of tracers in sediments with conveyor-belt deposit feeders. J. Geophys. Res. 91: 8542–8558.

  44. Rochelle, B. P. & M. R. Church, 1987. Regional patterns of sulfur retention in watersheds of the eastern United States. Wat. Air Soil Pollut. 36: 61–73.

  45. Rudd, J. W. M., C. A. Kelly & A. Furutani, 1986. The role of sulfate reduction in long term accumulation of organic and inorganic sulfur in lake sediments. Limnol. Oceanogr. 31: 1281–1291.

  46. Rudd, J. W. M., C. A. Kelly, V. St. Louis, R. H. Hesslein, A. Furutani & M. H. Holoka, 1986. Microbial consumption of nitric and sulfuric acids in acidified north temperate lakes. Limnol. Oceanogr. 31: 1267–1280.

  47. Smol, J. P., D. F. Charles & D. R. Whitehead, 1984. Mallomonadacean microfossils provide evidence of recent lake acidification. Nature 307: 628–630.

  48. Sullivan, T. J., B. J. Cosby, J. A. Bernert, D. F. Charles, E. A. Jenne, A. R. Selle & J. M. Eilers, 1991. Comparison of MAGIC and DIATOM Paleolimnological model hind-casts of lakewater acidification in the Adirondack Region of New York, PNL-7487. Pacific Northwest Laboratory, Richland, Washington.

  49. Ullman, W. J. & R. C. Aller, 1982. Diffusion coefficients in nearshore marine sediments. Limnol. Oceanogr. 27: 552–556.

  50. Wagner, G. H. & K. S. Steele, 1982. Sulfate analyses of rain water. Amer. Laboratory, July 1982: 12–15.

  51. Wright, R. F., B. J. Cosby, G. M. Hornberger & J. N. Galloway, 1986. Comparison of paleolimnological with MAGIC model reconstructions of water acidification. Wat. Air Soil Pollut. 30: 367–380.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Matisoff, G., Holdren, G.R. Historical loading record of sulfur in an Adirondack Lake. J Paleolimnol 9, 243–256 (1993). https://doi.org/10.1007/BF00677216

Download citation

Key words

  • sulfur
  • sediments
  • mathematical model
  • paleolimnology
  • non steady-state diagenesis
  • Adirondack