Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Partition coefficients of ω-phenylalkanols between water and sodium deoxycholate micelles

  • 36 Accesses

  • 4 Citations

Abstract

The partition coefficient of ω-phenylalkanols [C6H5(CH2)mpOH, m p =3–6] between water and micelles of sodium deoxycholate (NaDC) has been determined by a differential spectroscopic method at 25°C. The linear dependence of thestandard free energy change of transfer calculated from the partition coefficient on the alkyl chain length of the alkanols (m p ≥4) yields the standard free energy change per methylene group [δGo(CH2)]. δGo(CH2) value for the present system, −3.21 kJ-mol−1 is larger in magnitude than that for sodium dodecylsulfate (SDS)-ω-phenylalkanol system, −2.40 kJ-mol−1. The result indicates that the alkyl chain of ω-phenylalkanols has higher affinity to NaDC micelles than to SDS micelles although the molecular structure of NaDC is more rigid and bulkier than that of SDS and the aggregation number of micelles of the former is much smaller than that of micelles of the latter. On the basis of the linear relation between the effect of added ω-phenylalkanols on the critical micelle concentration of NaDC (−dCcmc/dCa) and the partition coefficient, it is found that the degree of ionization of NaDC micelles is not influenced by solubilization of ω-phenylalkanols into the micelles.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    D. M. Small, inThe Bile Acids Vol. 1, P. P. Nair and D. Kritchevski, eds., (Plenum Press, New York, 1971); p. 249.

  2. 2.

    M. C. Carey, inSteroids and Bile Acids, H. Danielesson and J. Sjövall, eds., (Elsevier, New York, 1985) p. 345.

  3. 3.

    D. F. Evans, R. Depalma, J. Nadas, and J. Thomas,J. Solution Chem. 1, 377 (1972).

  4. 4.

    P. Mukerjee, Y. Moroi, M. Murata, and A. Y. S. Yang,Hepatology 4, 61S (1984).

  5. 5.

    R. Zana and D. E. Guveli,J. Phys. Chem. 89, 1687 (1985).

  6. 6.

    M. C. Carey, J. C. Montet, M. C. Phillips, M. J. Armstrong, and N. A. Mazer,Biochemistry 20, 337 (1981).

  7. 7.

    L. R. Fisher and D. G. Oakenfull,Aus. J. Chem. 32, 31 (1979).

  8. 8.

    H. Kawamura, M. Manabe, T. Narikiyo, H. Igimi, Y. Murata, G. Sugihara and M. Tanaka,J. Solution Chem. 16, 433 (1987).

  9. 9.

    H. Kawamura, Y. Murata, T. Yamaguchi, H. Igimi, M. Tanaka, G. Sugihara, and J. P. Kratohvil,J. Phys. Chem. 93, 3321 (1989).

  10. 10.

    G. Sugihara, K. Yamakawa, Y. Murata, and M. Tanaka,J. Phys. Chem. 86, 2786 (1982).

  11. 11.

    H. Igimi and M. C. Carey,J. Lipid Res. 21, 72 (1980).

  12. 12.

    H. Igimi and M. C. Carey,J. Lipid Res. 22 254 (1981).

  13. 13.

    G. Salvioll, H. Igimi, and M. C. Carey,J. Lipid Res. 24, 701 (1983).

  14. 14.

    H. Kawamura, M. Manabe, Y. Miyamoto, Y. Fujita, and S. Tokunaga,J. Phys. Chem. 93, 5536 (1989).

  15. 15.

    J. M. Roe and B. W. Barry,J. Colloid Inter. Sci. 107, 398 (1985).

  16. 16.

    D. E. Guveli,Colloids and Surfaces 39, 349 (1989).

  17. 17.

    K. Hayase and S. Hayano,Bull. Chem. Soc. Jpn. 50, 83 (1977).

  18. 18.

    C. H. Spink and S. Colgan,J. Phys. Chem. 87, 888 (1983).

  19. 19.

    M. Manabe, M. Koda, and K. Shirahama,Bull. Chem. Soc. Jpn. 48 3553 (1975).

  20. 20.

    M. Manabe, H. Kawamura, G. Sugihara, and M. Tanaka,Bull. Chem. Soc. Jpn. 61, 1551 (1988).

  21. 21.

    M. Manabe, S. Koda, and K. Shirahama,J. Colloid Inter. Sci. 77, 189 (1980).

  22. 22.

    M. Manabe, S. Kikuchi, Y. Nakano, Y. Kikuchi, S. Tokunaga and M. Koda,Mem. Niihama Tech. Coll. (Sci. Eng.) 20, 51 (1984).

  23. 23.

    M. Abu-Handiyyah and C. M. El-Danab,J. Phys. Chem. 87, 5443 (1983).

  24. 24.

    Y. Murata, M. Okawauchi, H. Kawamura, G. Sugihara, and M. Tanaka,Surfactants in Solution, Vol. 5, K. L. Mittal and P. Bothorel, eds., (Plenum, New York, 1987). p. 861.

  25. 25.

    J. P. Kratohvil and H. T. Dellicolli,Can. J. Biochem. 46, 946 (1968).

  26. 26.

    M. Manabe, H. Kawamura, M. Kojima, and S. Tokunaga,Mem. Niihama Tech. Coll. (Sci. Eng.) 23, 72 (1987).

Download references

Author information

Correspondence to Hideo Kawamura.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kawamura, H., Manabe, M., Tokunoh, T. et al. Partition coefficients of ω-phenylalkanols between water and sodium deoxycholate micelles. J Solution Chem 20, 817–828 (1991). https://doi.org/10.1007/BF00675113

Download citation

Key words

  • Sodium deoxycholate
  • ω-phenylalkanols
  • differential spectroscopic method
  • partition coefficient
  • standard free energy change of transfer
  • degree of ionization of micelles