Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Fermi substructure of space-time

  • 27 Accesses

  • 1 Citations

Abstract

If space-time possesses a Fermi substructure, then the canonical quantization of the space-time and the Fermi coordinates of a relativistic point particle must be mutually consistent. We show that the Fermi substructure\(x^\mu = \tfrac{1}{4}\sigma _{AB}^\mu \{ c^A , c^{*B} \} \) meets this requirement. We express the generators of the Lorentz group in terms of the Fermi coordinates and momenta and consider their coordinate representation.

This is a preview of subscription content, log in to check access.

References

  1. Bialynicki-Birula, I. (1986). InQuantum Concepts in Space and Time, R. Penrose and C. J. Isham, eds., Clarendon Press, Oxford, p. 226.

  2. Borchsenius, K. (1987).General Relativity and Gravitation,19, 643.

  3. Borchsenius, K. (1989).General Relativity and Gravitation,21, 959.

  4. Dirac, P. A. M. (1950).Canadian Journal of Mathematics,2, 129.

  5. Dirac, P. A. M. (1958).Proceedings of the Royal Society A,246, 326.

  6. Penrose, R. (1967). InBattelle Rencontre, C. M. DeWitt and J. A. Wheeler, eds., Benjamin, New York.

  7. Schwartz, J. H., and Van Nieuwenhuizen, P. (1982).Lettere al Nuovo Cimento,34, 21.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Borchsenius, K. Fermi substructure of space-time. Int J Theor Phys 34, 1863–1870 (1995). https://doi.org/10.1007/BF00674067

Download citation

Keywords

  • Quantum Mechanic
  • Clifford Algebra
  • Lorentz Group
  • Fermi System
  • Fermi Momentum