Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Cauchy boundary andb-incompleteness of space-time

  • 42 Accesses

  • 6 Citations


It is shown that if a space-time (M, g) is time-orientable and its Levi-Civita connection [in the bundle of orthonormal frames over (M, g)] is reducible to anO(3) structure, one can naturally select a nonvanishing timelike vector fieldξ and a Riemann metricg + onM. The Cauchy boundary of the Riemann space (M, g +) consists of “endpoints” ofb-incomplete curves in (M, g); we call it theCauchy singular boundary. We use the space-time of a cosmic string with a conic singularity to test our method. The Cauchy singular boundary of this space-time is explicitly constructed. It turns out to consist of what should be expected.

This is a preview of subscription content, log in to check access.


  1. Beem, J., and Ehrlich, P. (1981).Global Lorentzian Geometry, Dekker.

  2. Bosshard, B. (1976).Communications in Mathematical Physics,46, 263.

  3. Clarke, C. J. S. (1979).General Relativity and Gravitation,10, 977.

  4. Crittenden, R. (1962).Quarterly Journal of Mathematics (Oxford),13, 285.

  5. Dodson, C. T. J. (1978).International Journal of Theoretical Physics,17, 389.

  6. Dodson, C. T. J. (1979).General Relativity and Gravitation,10, 969.

  7. Ellis, G. F. R., and Schmidt, B. (1977).General Relativity and Gravitation,8, 915.

  8. Gancarzewicz, J. (1987).Differential Geometry, Polish Scientific Publishers [in Polish].

  9. Geroch, R., and Horowitz, G. T. (1979). InGeneral Relativity—An Einstein Centenary Survey, S. W. Hawking and W. Israel, eds., Cambridge University Press, Cambridge, p. 212.

  10. Geroch, R., Kronheimer, E. H., and Penrose, R. (1972).Proceedings of the Royal Society of London A,327, 545.

  11. Gruszczak, J. (1990).International Journal of Theoretical Physics,29(1), (1990).

  12. Hawking, S. W., and Ellis, G. F. R. (1973).Large Scale Structure of Space-Time, Cambridge University Press, Cambridge.

  13. Johnson, R. A. (1977).Journal of Mathematical Physics,18, 898.

  14. Kobayashi, S., and Nomizu, K. (1963).Foundations of Differential Geometry, Vol. 1, Interscience, New York.

  15. Penrose, R. (1978).Theoretical Principles in Astrophysics and Relativity, N. R. Lebovitz, W. H. Rein, and P. O. Vandervoort, eds., University of Chicago Press, Chicago, Illinois.

  16. Sachs, R. K. (1973).Communications in Mathematical Physics,33, 215.

  17. Schmidt, B. G. (1971).General Relativity and Gravitation,1, 269.

  18. Schmidt, B. G. (1979).General Relativity and Gravitation,10, 981.

  19. Staruszkiewicz, A. (1963).Acta Physica Polonica,24, 734.

  20. Steenrod, N. (1951).Topology of Fiber Bundles, Princeton University Press, Princeton, New Jersey.

  21. Szabados, L. B. (1988).Classical and Quantum Gravity,5, 121.

  22. Szabados, L. B. (1989).Classical and Quantum Gravity,6, 77.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gruszczak, J., Heller, M. & Pogoda, Z. Cauchy boundary andb-incompleteness of space-time. Int J Theor Phys 30, 555–565 (1991). https://doi.org/10.1007/BF00672901

Download citation


  • Endpoint
  • Field Theory
  • Elementary Particle
  • Quantum Field Theory
  • Cosmic String