Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Computability of physical operations

  • 27 Accesses

  • 1 Citations

Abstract

It is shown (for a very simplified model) that a number-theoretic function representing an experimental physical setup is general recursive.

This is a preview of subscription content, log in to check access.

References

  1. Daniel, W. (1982).Helvetica Physica Acta 55, 330.

  2. Feynman, R. P. (1982).Journal of Theoretical Physics 21, 467.

  3. Gisin, N. (1983).Journal of Mathematical Physics 24, 1779.

  4. Hardegree, G. M. (1979). The Conditional in Abstract and Concrete Quantum Logic, inThe Logico-Algebraic Approach to Quantum Mechanics, Vol. III, C. A. Hooker, ed., D. Reidel, Dordrecht.

  5. Kreisel, G. (1976). A notion of mechanistic theory, inLogic and Probability in Quantum Mechanics, P. Suppes, ed., D. Reidel, Boston.

  6. Primas, H. (1972). Problems of the interpretation of Quantum Mechanics of large molecular systems V-A, Lecture Notes, ETH, Winter 1971/72.

  7. Przełcecki, M. (1969).The Logic of Empirical Theories, Routlege and Kegan, London.

  8. Webb, J. C. (1983). Gödel's theorems and Church's thesis: A prologue to mechanism, inLanguage, Logic and Method, R. S. Cohen and M. W. Wartofsky, eds., D. Reidel, Dordrecht.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Posiewnik, A. Computability of physical operations. Int J Theor Phys 27, 83–88 (1988). https://doi.org/10.1007/BF00672050

Download citation

Keywords

  • Field Theory
  • Elementary Particle
  • Quantum Field Theory
  • Physical Setup
  • General Recursive