Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

A new theory of elementary matter part III: A self-consistent field theory of electrodynamics and correspondence with quantum mechanics

  • 56 Accesses

  • 7 Citations

Abstract

This paper exploits the axioms and general mathematical structure of a new theory of elementary matter, thus far developed in two earlier papers (Sachs, 1971b, c). It is shown here, in an explicit fashion, how the exact form of this theory approaches that of quantum mechanics of a ‘many-particle’ system that interacts electromagnetically. The form of the mathematical expression of quantum mechanics of a many-particle system is found to be a linear approximation for the nonlinear (deterministic) field theory of this author's approach. The latter approximation is valid only when the components of the (asserted) closed system are sufficiently weakly coupled so that it appears as a many-particle system. The physical equivalent of the Pauli exclusion principle is derived in this paper as anexact feature of the theory, which is, in fact, sensitive to its closed and nonlinear features. It is then shown how the Fermi-Dirac statistics in particle physics follows from the present nonlinear theory only in a linear approximation.

This is a preview of subscription content, log in to check access.

References

  1. Bethe, H. A. and Salpeter, E. E. (1957).Quantum Mechanics of One-and Two-Electron Atoms. Academic Press.

  2. Bogoliubov, N. N. and Shirkov, D. V. (1959).Introduction to the Theory of Quantized Fields. Interscience Publishers.

  3. Davies, P. C. W. (1970).Proceedings of the Cambridge Philosophical Society,68, 751.

  4. Dirac, P. A. M. (1947).Quantum Mechanics. Oxford University Press.

  5. Einstein, A. and Mayer, W. (1932).Sitzungsberichte der Akademie der Wissenschaften in Wien,8, 522.

  6. Eisenhart, L. P. (1933).Continuous Groups of Transformations. Princeton University Press.

  7. Halberstam, H. and Ingram, R. E. (1967).The Mathematical Papers of Sir William Rowan Hamilton, Vol. III: Algebra. Cambridge University Press.

  8. Hylleraas, E. A. (1929).Zeitschrift für Physik,54, 347.

  9. Heitler, W. (1944).The Quantum Theory of Radiation, 2nd ed., Sec. 16. Oxford University Press.

  10. Lamb, W. E. jr and Sanders, T. M., jr. (1956).Physical Review,103, 313.

  11. Lanczos, C. (1966).The Variational Principles of Mechanics, 3rd ed., Appendix II. University of Toronto Press.

  12. Laporte, O. and Uhlenbeck, G. E. (1931).Physical Review,37, 1380.

  13. Layzer, A. J. (1961).Journal of Mathematics and Physics,2, 308.

  14. Lewis, G. N. (1926).Proceedings of the National Academy of Sciences of the United States of America,12, 22, 439.

  15. Pekeris, C. L. (1958).Physical Review,112, 1649.

  16. Pekeris, C. L. (1959).Physical Review,115, 1216.

  17. Petermann, A. (1958).Fortschritte der Physik,6, 505.

  18. Sachs, M. and Schwebel, S. L. (1961).Nuovo cimento (Suppl.),21, 197.

  19. Sachs, M. and Schwebel, S. L. (1962).Journal of Mathematics and Physics,3, 843.

  20. Sachs, M. (1963).Nuovo cimento,27, 1138.

  21. Sachs, M. (1964a).Nuovo cimento,31, 98.

  22. Sachs, M. (1964b).British Journal for the Philosophy of Science,15, 213.

  23. Sachs, M. (1965).Nuovo cimento,37, 977.

  24. Sachs, M. (1967a).Synthese,17, 29.

  25. Sachs, M. (1967b).Nuovo cimento,47, 759.

  26. Sachs, M. (1968a).Nuovo cimento,53B, 398.

  27. Sachs, M. (1968b).Nuovo cimento,55B, 199.

  28. Sachs, M. (1968c).International Journal of Theoretical Physics, Vol. 1, No. 4, p. 387.

  29. Sachs, M. (1969a).Physics Today,22, 51.

  30. Sachs, M. (1969b).Lettere al Nuovo cimento,1, 741.

  31. Sachs, M. (1970a).Philosophy and Phenomenological Research,30, 403.

  32. Sachs, M. (1970b).Nature,226, 138.

  33. Sachs, M. (1970c).Nuovo cimento,66B, 137.

  34. Sachs, M. (1970d).British Journal for the Philosophy of Science,21, 359.

  35. Sachs, M. (1971a).International Journal of Theoretical Physics, Vol. 4, p.III.

  36. Sachs, M. (1971b).International Journal of Theoretical Physics (Part I of this series), Vol. 4, No. 6, p.III.

  37. Sachs, M. (1971c).International Journal of Theoretical Physics (Part II of this series), Vol. 4, No. 6, p.III.

  38. Sachs, M. (1971d).International Journal of Theoretical Physics (Part IV of this series), to be printed.

  39. Schiff, L. I. (1949).Quantum Mechanics. McGraw-Hill Book Co.

  40. Schilpp, P. A. (1949). Albert Einstein: Philosopher-Scientist. Lib. Liv. Phil.

  41. Tetrode, H. (1922).Zeitschrift für Physik,10, 317.

  42. Triebwasser, S., Dayhoff, E. S. and Lamb, W. E. jr. (1953).Physical Review,89, 98.

  43. Watson, G. N. (1945).Theory of Bessel Functions. Macmillan, New York.

  44. Wheeler, J. A. and Feynman, R. P. (1954).Review of Modern Physics,17, 157.

  45. Wu, C. S. and Shaknov (1950).Physical Review,77, 136.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sachs, M. A new theory of elementary matter part III: A self-consistent field theory of electrodynamics and correspondence with quantum mechanics. Int J Theor Phys 5, 35–53 (1972). https://doi.org/10.1007/BF00671652

Download citation

Keywords

  • Field Theory
  • Quantum Mechanic
  • Linear Approximation
  • Close System
  • Mathematical Structure