Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Mass of a body in Brans-Dicke theory

  • 25 Accesses

Abstract

Exploiting exact spherical solutions of the Brans-Dicke equations, we study various definitions of the total mass of a body in this theory. We argue why the vacuum spherical solutions involve—in general—two arbitrary constants of integration. We discuss the dependence of the total mass on these constants.

This is a preview of subscription content, log in to check access.

References

  1. Askari, H. R., and Riazi, N. (n.d.).Monthly Notices of the Royal Astronomical Society, submitted.

  2. Brans, C., and Dicke, R. H. (1961).Physical Review,124, 925.

  3. Bonnor, W. B. (1992).Classical and Quantum Gravity,9, 269.

  4. Cooperstock, F. I., Sarracino, R. S., and Bayin, S. S. (1981).Journal of Physics A: Mathematical and General,14, 181.

  5. Herrera, L., and Ibanez, J. (1993).Classical and Quantum Gravity,10, 535.

  6. Nordtvedt, K., Jr. (1968).Physical Review,169, 1017.

  7. Rosen, N., and Cooperstock, F. I. (1992).Classical and Quantum Gravity,9, 2657.

  8. Weinberg, S. (1972).Gravitation and Cosmology, Wiley, New York.

  9. Will, M. C. (1981).Theory and Experiments in Gravitational Physics, Cambridge University Press, Cambridge.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Askari, H.R., Riazi, N. Mass of a body in Brans-Dicke theory. Int J Theor Phys 34, 417–428 (1995). https://doi.org/10.1007/BF00671601

Download citation

Keywords

  • Field Theory
  • Elementary Particle
  • Quantum Field Theory
  • Total Mass
  • Arbitrary Constant