Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

The large numbers hypothesis and the cosmological constant


A recent generalization of Dirac's large numbers hypothesis has implications for the cosmological constant problem. We show that this generalization follows from the usual large numbers hypothesis.

This is a preview of subscription content, log in to check access.


  1. Barrow, J. D. (1981).Quarterly Journal of the Royal Astronomical Society,22, 388–420.

  2. Barrow, J. D. (1990). The mysterious lore of large numbers, inModern Cosmology in Retrospect, B. Bertotti, R. Balbinot, S. Bergia, and A. Messina, eds., Cambridge University Press, Cambridge, pp. 67–93.

  3. Barrow, J. D., and Tipler, F. J. (1986).The Anthropic Cosmological Principle, Oxford University Press, Oxford, pp. 219–287.

  4. Berman, M. S. (1992).International Journal of Theoretical Physics,31, 1217–1219.

  5. Dirac, P. A. M. (1937).Nature,139, 323.

  6. Dirac, P. A. M. (1938).Proceedings of the Royal Society,165, 199–208.

  7. Dirac, P. A. M. (1979).Proceedings of the Royal Society of London A,365, 19–30.

  8. Eddington, A. S. (1935).New Pathways in Science, Cambridge University Press, Cambridge.

  9. Lau, Y.-K. (1985).Australian Journal of Physics,38, 547–553.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Beesham, A. The large numbers hypothesis and the cosmological constant. Int J Theor Phys 33, 1935–1939 (1994).

Download citation


  • Field Theory
  • Elementary Particle
  • Quantum Field Theory
  • Cosmological Constant
  • Cosmological Constant Problem