Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Discrete gradients in discrete classical mechanics

Abstract

A simple model of discrete classical mechanics is given where, starting from the continuous Hamilton equations, discrete equations of motion are established together with a proper discrete gradient definition. The conservation laws of the total discrete momentum, angular momentum, and energy are demonstrated.

This is a preview of subscription content, log in to check access.

References

  1. Clarke, F. H. (1975).Transactions of the American Mathematical Society,205, 247–262.

  2. D'Innocenzo, A., Renna, L., and Rotelli, P. (1984).Physics Letters B,145, 268–270.

  3. D'Innocenzo, A., Renna, L., and Rotelli, P. (1986).European Journal of Physics, to be published.

  4. Friedberg, R., and Lee, T. D. (1983).Nuclear Physics B,225, 1–52.

  5. Greenspan, D. (1974).Bulletin of the American Mathematical Society,80, 553–555.

  6. Landau, L. D., and Lifshitz, E. M. (1969).Mechanics, Pergamon, New York.

  7. Lee, T. D. (1983).Physics Letters,122B, 217–220.

  8. Rockafellar, R. T. (1983).Mathematical Programming. The State of the Art, Springer-Verlag, New York, pp. 368–390.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Renna, L. Discrete gradients in discrete classical mechanics. Int J Theor Phys 26, 685–695 (1987). https://doi.org/10.1007/BF00670576

Download citation

Keywords

  • Field Theory
  • Angular Momentum
  • Elementary Particle
  • Simple Model
  • Quantum Field Theory