Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

The influence of yttrium on oxide scale growth and adherence

Abstract

Alloys and coatings for high-temperature service are designed to form selectively chromia scales, alumina scales, or, to a limited extent, silica scales upon exposure to the environment. For such oxide scales to be protective, they should be both slow growing and adherent. It turns out that the addition of yttrium to such alloys can often impart both characteristics to the oxide scale. However, the actual operating mechanisms continue to be a matter of controversy among researchers in the area of oxidation. In the present study, the growth and adherence of alumina and chromia scales on alloys containing yttrium, either as an oxide dispersion or as an intermetallic phase, have been investigated in conjunction with detailed oxide scale characterization using the techniques of scanning electron microscopy (SEM), transmission electron microscopy (TEM), and secondary ion mass spectrometry (SIMS). The results of the study are used for critical assessment of the proposed mechanisms, especially the more recent ones, and to suggest some new mechanisms for adherence.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    D. P. Whittle and J. Stringer,Philos. Trans. R. Soc. Lond. Ser. A 295, 309 (1980).

  2. 2.

    C. S. Giggins and F. S. Pettit,Met. Trans. 2, 1071 (1971).

  3. 3.

    J. Stringer, B. A. Wilcox and R. I. Jaffee,Oxid. Met. 5, 11 (1972).

  4. 4.

    C. M. Cotell, K. Przybylski, and G. J. Yurek, in Proc. Symp. Fund. Aspects of High Temp. Corr. II, ed. D. A. Shores and G. J. Yurek,Electrochem. Soc.,86(9), 75 (1986).

  5. 5.

    B. Lustman,Trans. TMS-AIME 188, 995 (1950).

  6. 6.

    J. K. Tien and F. S. Pettit,Met. Trans.,3, 1587 (1972).

  7. 7.

    K. L. Luthra and C. L. Briant,Oxid. Met. 26, 397 (1986).

  8. 8.

    J. G. Smeggil, A. W. Funkenbusch, and N. S. Bornstein,Met. Trans. 17A, 923 (1986).

  9. 9.

    T. A. Ramanarayanan, M. Raghavan, and R. Petkovic-Luton,J. Electrochem. Soc. 131, 923 (1984).

  10. 10.

    M. Raghavan, C. Klein and R. Petkovic-Luton, in 39th Annual Proceedings of the Electron Microscopy Society of America, G. W. Bailey, ed. (1981), p. 142.

  11. 11.

    R. Ayer, J. C. Scanlon, T. A. Ramanarayanan, R. R. Mueller and R. Petkovic-Luton,J. Mat. Res. 2, 16 (1987).

  12. 12.

    C. S. Tedmon,J. Electrochem. Soc. 113, 766 (1966).

  13. 13.

    T. A. Ramanarayanan and R. Petkovic-Luton,Ber. Bunsenges, Phys. Chem. 89, 402 (1985).

  14. 14.

    H. V. Atkinson,Oxid. Met. 24, 177 (1985).

  15. 15.

    W. C. Hagel and A. U. Seybolt,J. Electrochem. Soc. 108, 1146 (1961).

  16. 16.

    P. Kofstad and K. P. Lillerud,J. Electrochem. Soc. 127, 2410 (1980).

  17. 17.

    M. M. El-Aiat and F. A. Kroger,J. Am. Ceram. Soc. 65, 280 (1982).

  18. 18.

    J. L. Smialek and R. Browning, NASA Technical Memorandum 87168 (Lewis Research Center, Cleveland, Ohio, 1985).

  19. 19.

    K. T. Faber and A. G. Evans,Acta Met. 31, 565, 577 (1983).

  20. 20.

    M. I. Manning, inCorrosion and Mechanical Stress at High Temperatures, V. Guttmann and M. Merz, eds. (Applied Science Publishers Ltd., London, 1981), p. 323.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ramanarayanan, T.A., Ayer, R., Petkovic-Luton, R. et al. The influence of yttrium on oxide scale growth and adherence. Oxid Met 29, 445–472 (1988). https://doi.org/10.1007/BF00666845

Download citation

Key words

  • Scale adherence
  • segregation
  • doping
  • grain-boundary diffusion
  • yttriumcontaining alloys