Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Cytoskeletal and muscle-like elements in cochlear hair cells

Aktin und Tubulin — strukturelle und kontraktile Moleküle in den Sinneszellen der Cochlea


Monospezifische Antikörper gegen Aktin und Tubulin wurden in Kaninchen induziert und zum Nachweis von Mikrotubuli und Mikrofilamenten im Cortischen Organ von Mäusen und Meerschweinchen angewandt. Die Ergebnisse zeigen, daß Tubulin und Mikrotubuli Strukturelemente der Hörzellen sind, die deren Zytoskelett bilden. Während Mikrotubuli vorwiegend für die mechanische Stabilität der Haarzellen verantwortlich gemacht werden, läßt der Nachweis von Aktin die Möglichkeit eines kontraktilen Mechanismus in den Stereozilien zu. Für beide Proteine wird eine wesentliche Rolle bei der mechano-chemischen Kopplung des Hörorgans diskutiert.


Monospecific antibodies to actin and to tubulin were used as immunofluorescent probes to evaluate the distribution of microtubules and actin filaments in the organ of Corti in mouse and guinea pig. The results indicate that in cochlear receptor cells actin and actin filaments as well as tubulin and microtubules are integral cytoskeletal elements. The presence of actin suggests a possible contractile mechanism within the sensory cilia whereas tubulin is thought to play an important role in the stability of sensory cells. Both proteins are discussed to form structural elements required for the mechano-chemical coupling in hearing.

This is a preview of subscription content, log in to check access.







phosphate-buffered saline


  1. 1

    Federspil P (1972) Über das Haarzellschädigungsmuster nach parenteraler Gentamycin-Applikation beim Meerschweinchen. Laryng Rhinol 51: 845

  2. 2

    Flock Å, Flock B, Murray E (1977) Studies on the sensory hairs of receptor cells in the inner ear. Acta Otolaryngol 83: 85

  3. 3

    Wersäll J (1967) Christae ampullares. In: Jurato S (ed) Submicroscopic structure of the inner ear. Pergamon Press, Oxford, p 185

  4. 4

    Spoendlin H (1970) Auditory, vestibular, olfactory, and gustatory organs. In: Babel J, Bischoff A, Spoendlin H (eds) Ultrastructure of the peripheral nervous system and sensory organs. Thieme, Stuttgart, p 173

  5. 5

    Korn ED (1978) Biochemistry of actomysin-dependent cell motility. Proc Natl Acad Sci USA 75: 588

  6. 6

    Weber K (1976) Biochemical anatomy of microfilaments in cells in tissue culture using immunofluorescence microscopy. In: Perry SV, Margreth A, Adelstein RS (eds) Contractile systems in non-muscle tissues. North-Holland, Amsterdam, p 51

  7. 7

    Olmsted JB, Borisy GG (1973) Microtubules. Annu Rev Biochem 42: 507

  8. 8

    Flock Å, Cheung HC (1977) Actin filaments in sensory hairs of inner ear receptor cells. J Cell Biol 75: 339

  9. 9

    Shelanski ML, Geskin F, Cantor CR (1973) Microtubule assembly in the absence of added nucleotides. Proc Natl Acad Sci USA 70: 765

  10. 10

    Zenner HP, Pfeuffer T (1976) Microtubular proteins in pigeon erythrocyte membranes. Eur J Biochem 71: 177

  11. 11

    Dentler WL, Granett S, Rosenbaum JL (1975) Ultrastructural localisation of the high molecular weight proteins associated with microtubules. J Cell Biol 65: 237

  12. 12

    Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193: 265

  13. 13

    Cuatrecasas P, Wilcheck M, Anderson LB (1968) Selective enzyme purification by affinity chromatography. Proc Natl Acad Sci USA 61: 636

  14. 14

    Fuller GM, Brinkley BR, Boughter JM (1975) Immunofluorescence of mitotic spindles by using monospecific antibody against bovine brain tubulin. Science 187: 948

  15. 15

    Engström H, Acles HW, Hawkins JE Jr (1964) Cytoarchitecture of the organ of Corti. Acta Otolaryngol 188: 92

  16. 16

    Mooseker MS, Tilney LG (1975) Organisation of an actin filament-membrane complex. J Cell Biol 67: 725

  17. 17

    Matsumura F, Yoshimoto Y, Kamiya N (1980) Tension generation by actomyosin thread from a non-muscle system. Nature 285: 169

  18. 18

    Harries F (1968) Brownian motion in the cochlear partition. J Acoust Soc Am 44: 176

  19. 19

    Becker JS, Oliver JM, Berlin RD (1975) Fluorescence technique for following interactions of microtubule subunity and membranes. Nature 254: 152

  20. 20

    Yahara J, Edelman GM (1972) Restriction of the mobility of lymphocyte immunoglobulin receptors by concanavalin A. Proc Natl Acad Sci USA 69: 608

  21. 21

    Blitz AL, Fine RE (1974) Muscle-like contractile proteins and tubulin in synaptosomes. Proc Natl Acad Sci USA 71: 4472

  22. 22

    Elias E, Hruban Z, Wade JB, Boyer JL (1980) Phalloidin-induced cholestasis, a microfilament-mediated change in junctional complex permeability. Proc Natl Acad Sci USA 77: 2229

  23. 23

    Osborn M, Born T, Koitsch HJ, Weber K (1978) Three-dimensional arrangement of microfilaments, microtubules, and tonofilaments. Cell 14: 477

  24. 24

    Salmon ED, Goode D, Maugel TK, Boudre DB (1976) Pressure-induced depolymerisation of spindle microtubules. J Cell Biol 69: 443

  25. 25

    Tilney LG, Derosier DJ, Mulroy MJ (1980) The organization of actin filaments in the stereocilia of cochlear hair cells. J Cell Biol 86: 244

Download references

Author information

Additional information

Dedicated to Professor Dr. A. Herrmann on the occasion of his 80th birthday

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zenner, H.P. Cytoskeletal and muscle-like elements in cochlear hair cells. Arch Otorhinolaryngol 230, 81–92 (1981).

Download citation


  • Hörzellen
  • Stabilität
  • Aktin
  • Tubulin
  • Zytoskelett
  • Mechano-chemische Kopplung

Key words

  • Hearing cells
  • Stability
  • Actin
  • Tubulin
  • Cytoskeleton
  • Mechano-chemical coupling