Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Intergranular oxidation of silicon in 20Cr-25Ni niobium-stabilized stainless steel at 1140–1230 K

  • 74 Accesses

  • 3 Citations

Abstract

The kinetics of intergranular oxidation of silicon in a 20Cr-25Ni Nb-stabilized stainless steel are reported, at temperatures in the range 1140–1230 K, in CO2 at 40 bar pressure. The depth of attack increased parabolically with respect to time, with an activation energy of 335±30 kJ/mol. The mechanism of growth is discussed in terms of classical internal-oxidation theories, and an alternative explanation based on an “available-space” theory is developed. The internal oxidation rates in a number of different alloys are compared with diffusivities of metals in the base alloy. It is proposed that intergranular oxidation in the 20–25 Nb steel is controlled by the rate of outward diffusion of iron or chromium in the alloy.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    A. M. Emsley and M. P. Hill,Oxid. Met. 33, 265 (1990).

  2. 2.

    R. Rapp,Corrosion 21, 382 (1965).

  3. 3.

    F. H. Stott and G. C. Wood,Mats. Sci. Technol. 4, 1072 (1988).

  4. 4.

    H. E. Evans, D. A. Hilton, and R. A. Holm,Oxid. Met. 11, 1 (1977).

  5. 5.

    M. J. Bennett, J. A. Desport, and P. A. Labun,Oxid. Met. 22, 291 (1984).

  6. 6.

    M. J. Bennett (UKAERE Report R12667, 1987).

  7. 7.

    H. V. Atkinson,Nucl. Energy 25, 149 (1986).

  8. 8.

    R. C. Lobb, H. E. Evans, and A. Sasse,Mat. Sci. Technol. 5, 816 (1989).

  9. 9.

    H. E. Evans, D. A. Hilton, R. A. Holm, and S. J. Webster,Oxid. Met. 19, 1 (1983).

  10. 10.

    Y. Fukase, K. Nemoto, and R. Osozawa,Nippon Kinzoku Gakkai-Si 33, 46 (1969).

  11. 11.

    F. H. Stott, G. J. Gabriel, F. I. Wei, and G. C. Wood,Werkst. Korros. 38, 521 (1987).

  12. 12.

    Y. Shida, F. H. Stott, B. D. Bastow, D. P. Whittle, and G. C. Wood,Oxid. Met. 18, 93 (1982).

  13. 13.

    H. Hindam and D. P. Whittle,J. Mat. Sci. 18, 1389 (1983).

  14. 14.

    C. S. Giggins and F. S. Pettit,J. Electrochem. Soc. 118, 1782 (1971).

  15. 15.

    N. Belen, P. Tomaszewicz, and D. J. Young,Oxid. Met. 22, 227 (1984).

  16. 16.

    F. Maak,Z. Metallkde 52, 545 (1961).

  17. 17.

    F. Gesmundo and F. Viani,Oxid. Met. 25, 269 (1986).

  18. 18.

    J. Takada, K. Kashiwagi, and M. Adachi,J. Mat. Sci. 19, 3451 (1984).

  19. 19.

    D. P. Whittle, Y. Shida, G. C. Wood, F. H. Stott, and B. D. Bastow,Phil Mag. 46, 931 (1982).

  20. 20.

    F. H. Stott, A. Martinez-Villafane, and G. C. Wood,Int. Congr. on Metallic Corrosion (Toronto Publ. Nat. Res. Council, Ottawa, Canada, 1984), p. 317.

  21. 21.

    F. H. Stott, Y. Shida, D. P. Whittle, G. C. Wood, and B. D. Bastow,Oxid. Met. 18, 127 (1982).

  22. 22.

    F. H. Stott, G. C. Wood, Y. Shida, D. P. Whittle, and B. D. Bastow,Corr. Sci. 21, 599 (1981).

  23. 23.

    G. C. Wood, F. H. Stott, D. P. Whittle, Y. Shida, and B. D. Bastow,Corr. Sci. 23, 9 (1983).

  24. 24.

    S. Guruswamy, S. M. Park, J. P. Hirth, and R. A. Rapp,Oxid. Met. 36, 77 (1986).

  25. 25.

    R. Rolls and P. Shahhosseini, Oxid. Met.18, 115 (1982).

  26. 26.

    J. Robertson and M. I. Manning,Mat. Sci. Technol. 4, 1064 (1988).

  27. 27.

    J. H. Swisher and E. T. Turkdogan,Trans. Met. Soc. AIME 239, 426 (1967).

  28. 28.

    K. Bohnenkamp and H. J. Engell,Arch. Eisenhuttenw,35, 1011 (1964).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Emsley, A.M., Hill, M.P. Intergranular oxidation of silicon in 20Cr-25Ni niobium-stabilized stainless steel at 1140–1230 K. Oxid Met 34, 351–360 (1990). https://doi.org/10.1007/BF00665023

Download citation

Key words

  • intergranular oxidation of silicon
  • 20–25 stainless steel
  • available-space mechanism
  • carbon dioxide
  • high temperature