Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Oxidation of copper and electronic transport in copper oxides

  • 750 Accesses

  • 77 Citations

Abstract

Oxidation of copper and electronic transport in thermally-grown large-grain polycrystals of nonstoichiometric copper oxides were studied at elevated temperatures. Thermogravimetric copper oxidation was studied in air and oxygen at temperatures between 350 and 1000°C. From the temperature dependence of the oxidation rates, three different processes can be identified for the oxidation of copper: bulk diffusion, grain-boundary diffusion, and surface control with whisker growth; these occur at high, intermediate, and low temperatures, respectively. Electrical-conductivity measurements as a function of temperature (350–1134°C) and oxygen partial pressure (10−8–1.0 atm) indicate intrinsic electronic conduction in CuO over the entire range of conditions. Electronic behavior of nonstoichiometric Cu2O indicates that the charge defects are doubly-ionized oxygen interstitials and holes. The calculated enthalpy of formation of oxygen (\(\Delta H_{{\text{O}}_{\text{2}} }\)) and hole-conduction energy (EH) at constant composition for nonstoichiometric Cu2O are 2.0±0.2 eV and 0.82±0.02 eV, respectively.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    P. Kofstad,Non-Stoichiometry, Diffusion, and Electrical Conductivity in Binary Metal Oxides (Wiley Interscience, New York, 1972).

  2. 2.

    C. Wagner and H. Hammen,Z. Physik. Chem. B 40, 197 (1938).

  3. 3.

    M. O'Keefe and W. J. Moore,J. Chem. Phys. 36, 3009 (1962); H. L. McKinzie and M. O'Keefe,Phys. Lett. A 24, 137 (1967).

  4. 4.

    S. Mrowec, A. Stoklosa, and K. Godlewski,Cryt. Lat. Def. 5, 239 (1974).

  5. 5.

    M. Yoshimura, A. Revcolevschi, and J. Castaing,J. Mater. Sci. 11, 384 (1976).

  6. 6.

    Y. D. Tretyakov, V. F. Komarov, N. A. Prosvirhina, and I. B. Kusenok,J. Solid St. Chem. 5, 157 (1972).

  7. 7.

    J. Maluenda, R. Farhi, and G. Petot-Ervas,J. Phys. Chem. Solids 42, 911 (1981).

  8. 8.

    F. Perinet, S. Barbezat, and C. Nonty,J. Phys. Colloq. C 6, 315 (1980).

  9. 9.

    J. Gunderman, K. Hauffe, and C. Wagner,Z. Physik. Chem. B 37, 148 (1937).

  10. 10.

    M. O'Keefe and W. J. Moore,J. Chem. Phys. 35, 1324 (1961).

  11. 11.

    R. S. Toth, R. Kilkson, and D. Trivich,Phys. Rev. 122, 482 (1961).

  12. 12.

    K. Stecker,Ann. Phys. 7, 55 (1959).

  13. 13.

    N. L. Peterson and C. L. Wiley,J. Phys. Chem. Solids 45(3), 281–294 (1984).

  14. 14.

    J. Maluenda, R. Farhi, and G. Petot-Ervas,J. Phys. Chem. Solids 42, 697 (1981).

  15. 15.

    M. O'Keefe, Y. Ebisuzaki, and W. J. Moore,J. Phys. Soc. Jpn. 18, 131 (1963).

  16. 16.

    Handbook of Chemistry and Physics, 61st Ed. (CRC press, 1981).

  17. 17.

    W. J. Tomlinson and J. Yates,J. Phys. Chem. Solids 38, 1205 (1977).

  18. 18.

    E. Iguchi, K. Yajima, and Y. Saito,Trans. Jpn. Inst. Met. 14, 423 (1973).

  19. 19.

    C. Wagner and K. Grunewald,Z. Phys. Chem. B 40, 197 (1938).

  20. 20.

    J. P. Baur, D. W. Bridges, and W. M. Fassell, Jr.,J. Electrochem. Soc. 103, 273 (1956).

  21. 21.

    W. Feitknecht,Z. Elektrochem. 35, 142 (1929).

  22. 22.

    S. Mrowec and A. Stoklosa,Oxid. Met. 3, 142 (1971).

  23. 23.

    B. Onay,J. Electrochem. Soc. 136, 1578 (1989).

  24. 24.

    R. G. Kaufman and R. T. Hawkins,J. Electrochem. Soc. 131(2), 385;133(12), 2652 (1986);135(8), 2096 (1988);J. Luminesc. 31 &32, 509 (1984).

  25. 25.

    P. Kofstad,High Temperature Corrosion (Elsevier Applied Science, London and New York, 1988).

  26. 26.

    R. A. Rapp,Metall. Trans. A 15, 765 (1984); G. M. Raynaud and R. A. Rapp,Oxid. Met. 21, 89 (1984).

  27. 27.

    J.-H. Park and K. Natesan,Oxid. Met. 33, 31 (1990).

  28. 28.

    J.-H. Park and R. N. Blumenthal,J. Electrochem. Soc. 136, 2867 (1989).

  29. 29.

    J.-H. Park,Physica B 150, 80 (1988).

  30. 30.

    G. Herzberg,Atomic Spectra and Atomic Structure (Dover Pub., New York, 1944).

  31. 31.

    K. Stecker,Ann. Physik. 7, 55 (1959);7, 70 (1959).

  32. 32.

    L. B. Pankratz,Thermodynamic Properties of Elements and Oxides, U.S. NBS pub.B 272, National Bureau of Standards, Gaitherburg, MD, 1982.

  33. 33.

    M. H. Sukkar and H. L. Tuller, inSurface and Near-Surface Chemistry of Oxide Materials, Chap.15, J. Nowotny and L.-C. Dufour, eds. (Elsevier Science Publishers B. V., Amsterdam, 1988), p. 611.

Download references

Author information

Additional information

This work was supported by the U.S. Department of Energy, under Contract W-31-109-Eng-38.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Park, J.-., Natesan, K. Oxidation of copper and electronic transport in copper oxides. Oxid Met 39, 411–435 (1993). https://doi.org/10.1007/BF00664664

Download citation

Key words

  • Cu oxidation
  • electrical conductivity
  • defect mechanism
  • defect mobility
  • nonstoichiometry
  • copper oxides