Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Solution of anharmonic vibrational problems for the CF4 and C2H4 molecules by the variational method

  • 26 Accesses

  • 1 Citations

This is a preview of subscription content, log in to check access.

Literature cited

  1. 1.

    L. A. Gribov, A. I. Pavlyuchko, and G. F. Lozenko, “Variational solution of the anharmonic problem for the CO2 and HCN molecules,” Zh. Prikl. Spektrosk.,36, 87–92 (1982).

  2. 2.

    L. A. Gribov, A. I. Pavlyuchko, and G. F. Lozenko, “Interpretation of the states and analysis of the changes in geometry of molecules in connection with anharmonic vibrational excitations,” Opt. Spektrosk.,50, 450–457 (1981).

  3. 3.

    L. A. Gribov, A. I. Pavlyuchko, and G. F. Lozenko, “The solution of direct and inverse anharmonic mechanical spectral problems for the molecules H2CO, D2CO, C2H2, and C2D2,” Zh. Prikl. Spektrosk.,36, 274–278 (1982).

  4. 4.

    L. A. Gribov, “The solution of the problem of anharmonic vibrations of large amplitude of polyatomic molecules in the exact natural coordinates,” Opt. Spektrosk.,31, 842–845 (1971).

  5. 5.

    L. A. Gribov and N. I. Prokof'eva, “An algorithm for calculation of the corrections for kinematic anharmonicity in the theory of vibrations of polyatomic molecules,” Opt. Spektrosk.,45, 899–902 (1978).

  6. 6.

    A. I. Pavlyuchko and L. A. Gribov, “Programs for calculations of the anharmonic vibrations of molecules,” Zh. Prikl. Spektrosk.,33, 904–907 (1980).

  7. 7.

    I. Suzuki, “Anharmonic potential functions of simple molecules. Direct numerical diagonalization of the vibrational Hamiltonian matrix and its application to CO and HCl,” Bull. Chem. Soc. Jpn.,44, 3277–3287 (1971).

  8. 8.

    L. A. Gribov and G. V. Khovrin, “Determination of the potential surface and analysis of anharmonic vibrations of the water molecule,” Opt. Spektrosk.,36, 475–480 (1974).

  9. 9.

    L. A. Gribov and G. V. Khovrin, “Calculation of the potential surfaces of the H2S and CO2 molecules,” Opt. Spektrosk.,36, 1098–1102 (1974).

  10. 10.

    I. Suzuki, “Anharmonic potential functions of simple molecules. II, Direct numerical diagonalization of the vibrational Hamiltonian matrix and application to CO2 and CS2,” Bull. Chem. Soc. Jpn.,48, 3565–3572 (1975).

  11. 11.

    I. Suzuki, “Anharmonic potential function of simple molecules. III. Computation of vibrational—rotational energies of XYZ and X2Y2 type linear molecules through direct numerical diagonalization: application to the N2O molecule,” Bull. Chem. Soc. Jpn.,52, 1606–1613 (1979).

  12. 12.

    A. Ford, J. G. Smith, and D. H. Whiffen, “Anharmonic force field for carbonyl sulphide,” Mol. Phys.,29, 1685–1704 (1975).

  13. 13.

    D. H. Whiffen, “Fitting molecular potential surfaces to spectroscopic observations; example of carbonyl sulphide,” Mol. Phys.,39, 391–405 (1980).

  14. 14.

    G. D. Carney and C. W. Kern, ‘Vibrational—rotational analysis of some nonlinear molecules by a variational method,” Int. J. Quant. Chem. Symp., No. 9, 317–323 (1975).

  15. 15.

    M. G. Bucknell and N. C. Handy, “Vibrational—rotational wave functions and energies for the ground electronic state of the water molecule by a variational method,” Mol. Phys.,28, 777–792 (1974).

  16. 16.

    G. D. Carney, S. R. Langhoff, and L. A. Curtiss, “Variational calculation of vibrational properties of ozone,” J. Chem. Phys.,66, 3724–3738 (1977).

  17. 17.

    G. D. Carney, L. A. Curtiss, and S. R. Langhoff, “Improved potential function for bent AB2 molecules: water and ozone,” J. Mol. Spectrosc.,64, 371–381 (1976).

  18. 18.

    R. J. Whitehead and N. C. Handy, “Variational calculation of low-lying and excited vibra- tional levels of the water molecule,” J. Mol. Spectrosc.,59, 459–469 (1976).

  19. 19.

    R. J. Whitehead and N. C. Handy, “Variational calculation of vibrational—rotational energy levels for triatomic molecules,” J. Mol. Spectrosc.,55, 356–373 (1975).

  20. 20.

    G. D. Carney and R. N. Porter, “Ab initio calculation of the vibration spectrum,” J. Chem. Phys.,65, 3547–3565 (1976).

  21. 21.

    G. D. Carney and R. N. Porter, “Ab initio prediction of the vibration spectra of the deuterated species of H 3 + ,” Chem. Phys. Lett.,50, 327–329 (1977).

  22. 22.

    P. Botschwina, H. Haertner, and W. Sawadny, “Vibrational frequencies from anharmonic ab initio/empirical potential energy functions: nitrosyl chloride,” Chem. Phys. Lett.,24, 156–159 (1980).

  23. 23.

    P. Botschwina, “Vibrational frequencies from anharmonic ab initio/empirical potential energy functions. I. Method and application to H2O, HNO, HOF, and HOCl,” Chem. Phys.,40, 33–44 (1979).

  24. 24.

    I. M. Mills, “Harmonic and anharmonic force field calculations,” Theor. Chem.,1, 110–159 (1974).

  25. 25.

    J. Pliva, “Anharmonic force field. Critical evaluation of chemical and physical structural information“ (edited by D. R. Lide and M. A. Paul), Ch. 5, National Academy of Sciences, Washington, D.C. (1974), pp. 283–311.

  26. 26.

    A. C. Leonnotle II, C. Marcott, and J. Overend, “Vibrational anharmonicity In CF4,” J. Chem. Phys.,68 2076–2080 (1978).

  27. 27.

    K. Machida and Y. Tanaka, “Anharmonic force field of 1,1-dichloroethylene,” J. Chem. Phys.,61, 5040–5049 (1961).

  28. 28.

    K. Machida, “Torsional coordinates in vibrational anharmonicity: application to ethylene,” J. Chem. Phys.,44, 4186–4194 (1966).

  29. 29.

    Y. Tanaka and K. Machida, “Near-infrared spectra of formamide and its anharmonic potential,” J. Molec. Spectrosc.,63, 306–316 (1976).

Download references

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 36, No. 6, pp. 976–980, June, 1982.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gribov, L.A., Lozenko, G.F. Solution of anharmonic vibrational problems for the CF4 and C2H4 molecules by the variational method. J Appl Spectrosc 36, 693–697 (1982). https://doi.org/10.1007/BF00664296

Download citation

Keywords

  • Analytical Chemistry
  • Molecular Structure
  • C2H4
  • Variational Method
  • C2H4 Molecule