Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Adsorption and desorption of colloidal particles on glass in a parallel plate flow chamber—Influence of ionic strength and shear rate

  • 180 Accesses

  • 33 Citations

Abstract

The adsorption and desorption rates of 736 nm diameter polystyrene particles on glass were studiedin situ using a parallel plate flow chamber and automated image analysis. Adsorption and desorption rates were measured simultaneously during deposition, enabling the determination of initial deposition rates, blocked areas per particle, desorption rate coefficients, and the number of adhering particles in the stationary state. Deposition experiments were done from suspensions with different potassium nitrate concentrations (1, 10 and 50 mM) and at varying shear rates (15 to 200 s−1). The initial deposition rate, the desorption rate, the blocked area per particle and the number of adhering particles in the stationary state showed major variations with the shear rate and the ionic strength of the suspension. At low ionic strength, the number of adhering particles showed an oscillatory behavior in time, presumably due to a varying interaction between particle and collector surface. Blocked areas, determined from deposition kinetics, ranged 705 to 2374 cross-sections at low ionic strength, and from 10 to 564 at high ionic strength and corresponded well with those estimated from local pair distribution functions which were obtained from an analysis of the spatial arrangement of the adhering particles.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Dabros T, Van de Ven TGM (1982) J Colloid Interface Sci 89:232

  2. 2.

    Hinrichsen EL, Feder, Jøssang T (1986) J Statistical Ph 44:793

  3. 3.

    Varennes S, Van de Ven TGM (1987) PCH Phys Chem Hydrodyn 9:537

  4. 4.

    Schaaf P, Talbot J (1989) J Chem Phys 91:4401

  5. 5.

    Sjollema J, Busscher HJ, Weerkamp AH (1989) J Microbiol Methods 9:79

  6. 6.

    Van de Ven TGM (1989) Colloids Surf 39:107

  7. 7.

    Adamczyk Z, Zembala M, Siwek B, Warszynski P (1990) J Colloid Interface Sci 140:123

  8. 8.

    Meinders JM, Noordmans J, Busscher HJ (1992) J Colloid Interface Sci 152:265

  9. 9.

    Dabros T (1989) Colloids Surf 39:127

  10. 10.

    Sjollema J, Van der Mei HC, Uyen HM, Busscher HJ (1990) FEMS Microbiol Letters 69:263

  11. 11.

    Busscher HJ, Noordmans J, Meinders J, Van der Mei HC (1991) Biofouling 4:71

  12. 12.

    Adamczyk Z, Siwek B, Zembala M (1991) Biofouling 4:89

  13. 13.

    Hubbe MA (1985) Colloids Surf 16:227

  14. 14.

    Sharma MM, Chamoun H, Sita Rama Sarma DSH, Schechter RS (1992) J Colloid Interface Sci 149:121

  15. 15.

    Kallay N, Tomié M, Biškup B, Kunjasic I, Matijevié E (1987) Colloids Surf 28:185

  16. 16.

    Sjollema J, Busscher HJ, Weerkamp AH (1989) J Microbiol Methods 9:73

  17. 17.

    Brouwer WM, Zsom RLJ (1987) Colloids Surf 24:195

  18. 18.

    Sjollema J, Busscher HJ (1990) Colloids Surf 47:323

  19. 19.

    Meinders JM, Van der Mei HC, Busscher HJ (1992) J Microbiol Methods 16:119

  20. 20.

    Adamczyk Z, Van de Ven TGM (1981) J Colloid Interface Sci 80:340

  21. 21.

    Hull M, Kitchener JA (1969) Trans Faraday Soc 65:3093

  22. 22.

    Sjollema, J, Busscher HJ (1989) J Colloid Interface Sci 132:382

  23. 23.

    Hubbe MA (1987) Colloids Surf 25:325

  24. 24.

    Dahneke B (1975) J Colloid Interface Sci 50:89

  25. 25.

    Dahneke B (1975) J Colloid Interface Sci 50:194

  26. 26.

    Goldman AJ, Cox RG, Brenner H (1967) Chem Eng Sci 22:637

  27. 27.

    Goldman AJ, Cox RG, Brenner H (1967) Chem Eng Sci 22:653

  28. 28.

    Kallay N, Bišku B, Tomić M, Matijević E (1986) J Colloid Interface Sci 114:357

  29. 29.

    Reynolds PA, Goodwin JW (1987) Colloids Surf 23:273

  30. 30.

    Van de Ven TGM (1988) J Colloid Interface Sci 124:138

  31. 31.

    Dabros T, Van de Ven TGM (1983) Colloid Polym Sci 261:694

  32. 32.

    Malysa K, Dabros T, Van de Ven TGM (1986) J Fluid Mech 162:157

  33. 33.

    Dabros T, Van de Ven TGM (1992) Int J Multiphase Flow 18:751

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Meinders, J.M., Busscher, H.J. Adsorption and desorption of colloidal particles on glass in a parallel plate flow chamber—Influence of ionic strength and shear rate. Colloid Polym Sci 272, 478–486 (1994). https://doi.org/10.1007/BF00659461

Download citation

Key words

  • Parallel plate flow chamber
  • adsorption
  • desorption
  • blocked area
  • image analysis