Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

High-temperature oxidation of a rapidly solidified amorphous Ta-Ir alloy

  • 58 Accesses

  • 5 Citations

Abstract

The oxidation products formed at 500 and 700°C on an amorphous Ta-44.5 at% Ir alloy in an Ar-0.1% O2 gas mixture were characterized using SEM, XRD, EPMA, TEM, STEM, AES, and XPS. Initially, a thin (3–4 nm) layer of Ta2O5 formed at the surface of the alloy. Continued growth of the Ta2O5, which occurred very rapidly, involved diffusion of oxygen anions from the Ta2O5/gas interface to the alloy/Ta2O5 interface, where tantalum was selectively oxidized. Because the oxide grew more quickly than iridium could diffuse back into the alloy, the iridium coalesced into platelets of crystalline iridium-rich alloy that were oriented approximately parallel to the oxide/alloy interface, and which became embedded in a matrix of Ta2O5. The unoxidized core remained in the glassy state. The oxidation process and/or the dissolution of oxygen into the unoxidized alloy caused the alloy to become embrittled.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    U. Gonser, M. Ackermann, and H.-G. Wagner,J. Mag. Mat. 31-34, 1605 (1983).

  2. 2.

    L. Leonardsson and B. Andersson,Proceeding of the 4th International Conference on Rapidly Quenched Metals (Metals Society, London, 1981), p. 579.

  3. 3.

    O. Hunderi and R. Bergerson,Corr. Sci. 22, 135 (1982).

  4. 4.

    J. Bigot, Y. Calvayrac, M. Harmelin, J-P. Chevalier, and A. Quivy,Proceedings of the 4th International Conference on Rapidly Quenched Metals (Metals Society, London, 1981), p. 1463.

  5. 5.

    L. Ley and J. D. Riley,Proceedings of the 7th International Vacuum Congress and 3rd International Conference on Solid Surfaces (Berger and Sohne, Vienna), p. 2031, 1977.

  6. 6.

    M. Fisher, D. E. Polk, and B. C. Giessen inRapid Solidification Processing—Principles and Technologies II, R. Mehrabian, B. Kear, and M. Cohen, eds. (Claitors Publishing Division, Baton Rouge, LA, 1978), p. 140.

  7. 7.

    S. Davis, M. Fischer, B. C. Giessen, and D. E. Polk, inRapidly Quenched Metals III, B. Cantor, ed. (The Metals Society, London, 1978), Vol. 2, p. 245.

  8. 8.

    O. Kubaschewski and C. B. Alcock,Metallurgical Thermochemistry, 5th ed (Pergamon Press, New York, 1979), pp. 380, 383.

  9. 9.

    C. D. Wagner, W. Davis, W. M. Riggs, L. E. Davis, J. F. Moulder, and G. E. Muilenberg,Physical Electronics Handbook of X-Ray Photoelectron Spectroscopy (Perkin-Elmer publication, Eden Prairie, Minnesota 1979).

  10. 10.

    A. E. McHale and H. L. Tuller,J. Am. Cer. Soc.,68, 651 (1985).

  11. 11.

    V. P. Elyutin, T. G. Lenskaya, Yu. A. Pavlov, and V. P. Polyakov,Dokl. Akad. Nank. SSSR (Tech. Phys.) 199, 62 (1971).

  12. 12.

    C. Wagner,J. Electrochem. Soc. 99, 369 (1952).

  13. 13.

    B. Cantor and R. W. Cahn, inAmorphous Metallic Alloys, F. E. Luborsky, ed. (Butterworths, London, 1983), p. 487.

  14. 14.

    M. Kijek, M. Ahmadzadeh, B. Cantor, and R. W. Cahn,Scripta Met. 14, 1337 (1980).

  15. 15.

    C. Wagner,J. Electrochem. Soc. 103, 571 (1956).

  16. 16.

    G. Yurek, ORNL Report No. ORNL-5116 (Oak Ridge National Laboratory, Oak Ridge, TN, 1979).

  17. 17.

    R. Wong and M. D. Merz, Battelle Pacific Northwest Division, Richland, Washington, private communication.

  18. 18.

    S. Mrowec and K. Przybylski,High Temp. Mat. Proc. 6, 1 (1984).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cotell, C.M., Yurek, G.J. High-temperature oxidation of a rapidly solidified amorphous Ta-Ir alloy. Oxid Met 26, 363–384 (1986). https://doi.org/10.1007/BF00659342

Download citation

Key words

  • high-temperature oxidation
  • metallic glasses
  • amorphous alloys
  • tantalum
  • iridium