Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

The seasonal variation of the newtonian constant of gravitation and its relationship with the “classical tests” of general relativity

Abstract

The ratio between the Earth's perihelion advance (Δθ) E and the solar gravitational red shift (GRS) (Δø s e)a 0/c 2 has been rewritten using the assumption that the Newtonian constant of gravitationG varies seasonally and is given by the relationship, first found by Gasanalizade (1992b) for an aphelion-perihelion difference of (ΔG)a−p . It is concluded that

$$\begin{gathered} (\Delta \theta )_E = \frac{{3\pi }}{e}\frac{{(\Delta \phi _{sE} )_{A_0 } }}{{c^2 }}\frac{{(\Delta G)_{a - p} }}{{G_0 }} = 0.038388 \sec {\text{onds}} {\text{of}} {\text{arc}} {\text{per}} {\text{revolution,}} \hfill \\ \frac{{(\Delta G)_{a - p} }}{{G_0 }} = \frac{e}{{3\pi }}\frac{{(\Delta \theta )_E }}{{(\Delta \phi _{sE} )_{A_0 } /c^2 }} = 1.56116 \times 10^{ - 4} . \hfill \\ \end{gathered} $$

The results obtained here can be readily understood by using the Parametrized Post-Newtonian (PPN) formalism, which predicts an anisotropy in the “locally measured” value ofG, and without conflicting with the general relativity.

This is a preview of subscription content, log in to check access.

References

  1. BIPM: 1983,Comptes Rendus des Séances de la 17e CGPM, BIPM, France.

  2. Biraben, F.et al.: 1989,Phys. Rev. Lett. 62, 6.

  3. Brans, C. and Dicke, R.H.: 1961,Phys. Rev. 124, 925.

  4. Cohen, E.R. and Giacomo, P.: 1987,Physica 146, 1.

  5. Cohen, E.R. and Taylor, B.N.: 1987,Rev. Mod. Phys. 59, 1121.

  6. Dicke, R.H.: 1961, in: I.V. Berkner and H. Odishaw (eds.),Science in Space, McGraw-Hill Book Co., Inc., New York, p. 111.

  7. Dicke, R.H.: 1962,Phys. Rev. 125, 2163.

  8. Dicke, R.H.: 1964, in: H.-E. Chiu and W.F. Hoffmann (eds.),Gravitation and Relativity, W.A. Benjamin, Inc., New York, p. 251.

  9. Facy, L. and Pontikis, C.: 1970,Comptes Rend. 270B, 15.

  10. Facy, L. and Pontikis, C.: 1971,Comptes Rend. 272B, 1397.

  11. Freundlich, E.F.: 1954,Phil. Mag. 45, 303.

  12. Gasasalizade, A.G.: 1971,Solar Phys. 20, 507.

  13. Gasanalizade, A.G.: 1991,Abstracts 2nd Int. Conf. ‘Problem Space and Time in Natural Sciences’, St. Petersburg, p. 17.

  14. Gasanalizade, A.G.: 1992a,Astrophys. Space Sci. 189, 155. Corrigendum: 1993,Astrophys. Space Sci. 201, 163.

  15. Gasanalizade, A.G.: 1992b,Astrophys. Space Sci. 195, 463.

  16. Heyl, P.R. and Chrzanowski, P.: 1942,J. Res. Natl. Bur. Stand. 29, 1.

  17. IAU 1976: 1977,IAU Transactions 16B, D. Reidel Publ. Co., Dordrecht, Holland, p. 49.

  18. Josephson, B.D.: 1962,Phys. Letters 1, 251.

  19. von Klitzing, K.: 1986,Rev. Mod. Phys. 58, 519.

  20. Lang, K.P.: 1974,Astrophysical Formulae, Springer-Verlag, Berlin, p. 578.

  21. Luther, G. and Towler, W.R.: 1982,Phys. Rev. Lett. 48, 121.

  22. Nordtvedt, K., Jr. and Will, C.M.: 1972,Astrophys. J. 177, 775.

  23. Pontikis, C.: 1972,Comptes Rend. 274B, 437.

  24. Rose, R.D.et al.: 1969,Rev. Lett. 23, 655.

  25. Sagitov, M.U.et al.: 1979,Dokl. Acad. Nauk SSSR 245, 567; (Soviet Phys. Dokl. 245, 20 (1981)).

  26. Shapiro, J.J.et al.: 1972,Phys. Rev. Lett. 28, 1594.

  27. Shapiro, I.I.: 1979, in:Astrofisica E Cosmologia Gravitazione Quanti E Relativita, Guinti Barbera, Firenze.

  28. Taylor, B.N. and Cohen, E.R.: 1990,J. Res. Natl. Inst. Stand. Technol. 95, 497.

  29. Vinti, J.P.: 1972,Celest. Mech. 6, 198.

  30. Whitrow, G.J. and Morduch, G.E.: 1965, in: A. Beer (ed.),Vistas in Astronomy 6, Pergamon Press, Oxford.

  31. Will, C.M.: 1971,Astrophys. J. 169, 141.

  32. Will, C.M. and Nordtvedt K., Jr.: 1972,Astrophys. J. 177, 757.

  33. Wittmann, A.D.: 1974,Solar Phys. 36, 65.

  34. Wittmann, A.D.: 1977,Astron. Astrophys. 61, 225.

  35. Wittmann, A.D., Alge, E. and Bianda, M.: 1991,Solar Phys. 135, 243.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gasanalizade, A.G. The seasonal variation of the newtonian constant of gravitation and its relationship with the “classical tests” of general relativity. Astrophys Space Sci 211, 233–240 (1994). https://doi.org/10.1007/BF00658226

Download citation

Keywords

  • Anisotropy
  • General Relativity
  • Seasonal Variation
  • Classical Test
  • Newtonian Constant