Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

The effect of froth stability and wettability on the flotation of a xerographic toner

Abstract

The Separation of ink and pulp fibers in recycled paper is primarily achieved by flotation methods. Xerographic toners from photocopiers and laser printers are known to cause problems in flotation deinking. Wettability and froth stability are two important factors which determine the floatability of xerographic toners. The floatability is investigated for a selected toner using a cationic, a nonionic, and an anionic surfactant. At low surfactant concentrations the froth is too unstable to support flotation, whereas at high surfactant concentrations the toner is rendered hydrophilic by adsorbed surfactant molecules and does not stick to air bubbles. Consequently, a maximum in flotation response is found at an intermediate surfactant concentration near the critical micelle concentration. Cationic, nonionic, and anionic surfactants all adsorb with their hydrocarbon tails on the toner surface. By choosing appropriate froth-stabilizing additives it is possible to enhance the flotation performance.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Baumgarten HL, Grossmann H, Weigl J (1988) Papier (Darmstadt) 42(10A):V166-V177

  2. 2.

    Ferguson LD (1991) Progr Paper Recycl 1(November): 17–23

  3. 3.

    Pfalzer L (1991) Wochenbl Papierfabr 119:183–190

  4. 4.

    Shrinath A, Szewczak JT, Bowen IJ (1991) Tappi J 74(7):85–93

  5. 5.

    Carr WF (1991) Tappi J 74(2):127–132

  6. 6.

    Pfalzer L (1979) Tappi J 62(7):27–30

  7. 7.

    Quick TH, Hodgson KT (1986) Tappi J 69(3):102–106

  8. 8.

    Jones WS (1992) Progr Paper Recycl 2(August):51–56

  9. 9.

    Snyder BA, Schmidt DC, Berg JC (1993) Progr Paper Recycl 3(November):17–26

  10. 10.

    Leja J (1982) Surface chemistry of froth flotation. Plenum Press, New York

  11. 11.

    Laskowski JS (ed) (1989) Frothing in flotation. Gordon and Breach, New York

  12. 12.

    Somasundaram P, Moudgil BM (eds) (1988) Reagents in mineral technology. Surfactant science series vol. 27, Marcel Dekker, New York

  13. 13.

    Epple M, Berg JC (1994) Progr Paper Recycl (accepted)

  14. 14.

    Berg JC (1986) In: Salmén L, de Ruvo A, Seferis JC, Stark EB (eds) Composite systems from natural and synthetic polymers, Elsevier, Amsterdam, pp 23–46

  15. 15.

    Fuerstenau DW, Metzger PH, Seele GD (1957) Eng Min J 158(3):93–95

  16. 16.

    Larsson A, Stenius P, Ödberg L (1984) Sven Papperstidn 87(18):R158-R164

  17. 17.

    Snyder BA, Berg JC (1993) Tappi J (accepted)

  18. 18.

    Fuerstenau DW, Healy TW, Somasundaran P (1964) Trans Am Inst Min Metall Pet Eng 229:321–325

  19. 19.

    Wakamatsu T, Fuerstenau DW (1968) Adv Chem Ser 79:161–172

  20. 20.

    Fuerstenau DW (1971) In: Hair ML (ed) The chemistry of biosurfaces, vol. 1, Marcel Dekker, New York, pp 143–176

  21. 21.

    Novich BE (1990) Colloids Surf. 46:255–269

  22. 22.

    van Os NM, Haak JR, Rupert LAM (1993) Physicochemical properties of selected anionic, cationic and nonionic surfactants. Elsevier, Amsterdam

  23. 23.

    Bikerman JJ (1973) Foams. Springer, New York Heidelberg Berlin

  24. 24.

    Rosen MJ (1978) Surfactants and interfacial phenomena. Wiley-Interscience, New York

  25. 25.

    Parfitt GD, Rochester CH (eds) (1983) Adsorption form solution at the solid/liquid interface. Academic Press, London

  26. 26.

    Connor P, Ottewill RH (1971) J Coll Interface Sci 37:642–651

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Epple, M., Schmidt, D.C. & Berg, J.C. The effect of froth stability and wettability on the flotation of a xerographic toner. Colloid Polym Sci 272, 1264–1272 (1994). https://doi.org/10.1007/BF00657780

Download citation

Key words

  • Deinking
  • flotation
  • wettability
  • froth stability
  • cooperative adsorption