Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Self-propagating high-temperature synthesis as a means of obtaining composites under conditions of joule energy dissipation

  • 32 Accesses

This is a preview of subscription content, log in to check access.

Literature cited

  1. 1.

    Soviet Patent No. 255221. “Method of synthesizing refractory inorganic compounds“. A. G. Merzhanov, V. M. Shkiro, and I. P. Borovinskaya, Otkrytiya. Izobret. Prom. Obraztsy. Tov. Zn., No. 10, 112 (1971).

  2. 2.

    A. G. Merzhanov, “Problems of technological combustion”, in: Combustion Processes in Chemical Technology and Metallurgy [in Russian], Chernogolovka (1975), pp. 5–28.

  3. 3.

    A. G. Merzhanov and I. P. Borovinskaya, “Self-propagating high-temperature synthesis in the chemistry and technology of refractory compounds”, Zh. Vsesoyuz. Khim. O-va im. D. I. Mendeleeva,24, No. 3, 223–227 (1979).

  4. 4.

    SHS. Bibliographic Index. No. 1 [in Russian], Chernogolovka (1982).

  5. 5.

    SHS. Bibliographic Index. No. 2 [in Russian], Chernogolovka (1984).

  6. 6.

    SHS. Bibliographic Index. No. 3 [in Russian], Chernogolovka (1986).

  7. 7.

    A. G. Merzhanov, “Theory of gasless combustion”, Preprint Division Institute of Chemical Physics of the Academy of Sciences of the USSR, Chernogolovka (1973).

  8. 8.

    A. F. Belyaev and L. D. Komkova, “Pressure dependence of the burning rate of thermites”, Zh. Fiz. Khim.,24, No. 11, pp. 1302–1311.

  9. 9.

    E. I. Maksimov, A. G. Merzhanov, and V. M. Shkiro, “Gasless compositions as a simple combustion model”, Fiz. Goreniya Vzryva, No. 1, 24–29 (1965).

  10. 10.

    A. A. Zenin, A. G. Merzhanov, and G. A. Nersisyan, “Investigation of the structure of the thermal wave in SHS processes (witeh reference to boride synthesis)”, Fiz. Goreniya Vzryva,17, No. 1, 79–90 (1981).

  11. 11.

    A. A. Zenin and G. A. Nersisyan, “Zone structure of the boride SHS wave near critical quenching conditions”, Khim. Fiz., No. 3, 411–418 (1982).

  12. 12.

    B. I. Khaikin, “Theory of combustion processes in heterogeneous condensed media”, in: Combustion Processes in Chemical Technology and Metallurgy [in Russian], Chernogolovka (1975), pp. 227–244.

  13. 13.

    V. M. Shkiro and I. P. Borovinskaya, “Investigation of the laws of combustion of titanium with carbon”, in: Combustion Processes in Chemical Technology and Metallurgy [in Russian], Chernogolovka (1975), pp. 253–258.

  14. 14.

    A. K. Filonenko, “Nonstationary effects associated with the combustion of heterogeneous systems forming refractory products”, in: Combustion Processes in Chemical Technology and Metallurgy [in Russian], Chernogolovka (1975), pp. 258–273.

  15. 15.

    S. A. Karateskov, V. I. Yukhvid, and A. G. Merzhanov, “Laws and mechanism of combustion of melting heterogeneous systems in a body force field”, Fiz. Goreniya Vzryva,21, No. 6, 41–43 (1985).

  16. 16.

    V. A. Andreev, E. A. Levashov, V. M. Mal'tsev, and N. N. Khavskii, “Combustion of multicomponent systems in an ultrasonic field”, Fiz. Goreniya Vzryva,23, No. 6, 65–69 (1987).

  17. 17.

    A. I. Kirdyashkin, Yu. M. Maksimov, and A. G. Merzhanov, “Effect of a magnetic field on the combustion of heterogeneous systems with condensed reaction products”, Fiz. Goreniya Vzryva,22, No. 6, 65–72 (1986).

  18. 18.

    V. A. Knyazik, A. G. Merzhanov, V. B. Solomonov, and A. S. Shteinberg, “Macrokinetics of the high-temperature interaction of titanium and carbon under electrothermal explosion conditions”, Fiz. Goreniya Vzryva,21, No. 3, 69–73 (1985).

  19. 19.

    A. O. Troitskii, “Characteristics of the process of electropulse thermosynthesis in condensed media”, in: Abstr. Proc. 11th Scientific-Practical Seminar on Combustion Electrophysics [in Russian], Karaganda (1988), p. 66.

  20. 20.

    S. A. Balankin, N. I. Kidin, V. S. Sokolov, A. O. Troitskii, and I. A. Filimonov, “Instability of SHS wave under the influence of an electric pulse”, Abstr. Proc. 11th Scientific-Practical Seminar on Combustion Electrophysics [in Russian], Karaganda (1988), pp. 53–54.

  21. 21.

    V. N. Bloshenko, V. A. Bokii, and A. G. Merzhanov, “Mechanism of self-purification from oxygen impurity in the combustion of a molybdenum and boron powder mixture”, Fiz. Goreniya Vzryva,24, No. 2, 102–111 (1988).

  22. 22.

    V. N. Bloshenko, V. A. Bokii, and I. P. Borovinskaya, “Dissolving of metal oxide film during titanium carbide synthesis”, Fiz. Goreniya Vzryva,20, No. 6, 87–90 (1984).

  23. 23.

    A. P. Aldushin, S. I. Khudyaev, and Ya. B. Zel'dovich, “Numerical investigation of flame propagation in a mixture reacting at initial temperature”, Fiz. Goreniya Vzryva,15. No. 6, 20–27 (1979).

  24. 24.

    Ya. B. Zel'dovich, “Flame propagation in a substance reacting at initial temperature”, Combust. Flame,39, 219–224 (1980).

  25. 25.

    I. A. Filimonov, “Gasless combustion with additional heat release sources and spontaneous flame propagation as examples of wave processes”, Dissertation for Candidate of Phys.-Math. Sci., Moscow (1988).

  26. 26.

    Ya. B. Zel'dovich, “Chain reactions in flames — approximate theory of flame velocity”, Kinet. Katal., No. 3, 305–318 (1961).

  27. 27.

    G. M. Makhviladze and V. I. Myshenkov, “Thermal mechanism of increase of normal flame propagation velocity in a prebreakdown electric field”, Zh. Prikl. Mat. Teor. Fiz., No. 2, 29–38 (1977).

  28. 28.

    A. P. Aldushin, “Combustion instability of condensed systems with fixed reaction product temperature”, Fiz. Goreniya Vzryva,18, No. 3, 47–51 (1982).

  29. 29.

    A. P. Aldushin, “Steady propagation of an exothermic reaction front in a condensed medium”, Zk. Prikl. Mat. Teor. Fiz., No. 3, 96–105 (1974).s

Download references

Author information

Additional information

Translated from Mekhanika Kompozitnykh Materialov, No. 6, pp. 1106–1112, November–December, 1990.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kidin, N.I., Filimonov, I.A. Self-propagating high-temperature synthesis as a means of obtaining composites under conditions of joule energy dissipation. Mech Compos Mater 26, 812–818 (1991). https://doi.org/10.1007/BF00656669

Download citation

Keywords

  • Energy Dissipation
  • Joule Energy
  • Joule Energy Dissipation