Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Effect of annealing on the anomalous electrical resistivity of dilute copper-iron alloys at low temperatures

  • 49 Accesses

  • 8 Citations

Abstract

Electrical resistivity measurements in the temperature range 1.5–35 K on two copper alloys containing 115 and 380 atomic ppm iron are reported, in their unannealed state and also after annealing for 16 and 66 h in fore-vacuum at 530–550°C. Below the temperature of the resistivity minimum the impurity resistivity Δρ has the Kondo lnT behavior. However, in the liquid helium region the resistivity drops from its value atT=0, in proportion toT 2, conforming to Nagaoka's theory forT<T K/5. The Kondo temperatureT K is evaluated from the Δρ versusT 2 plots using Nagaoka's equation and is found to decrease with increasing concentration. Annealing is found to reduce the effective iron concentration and alsoT K. The impurity resistivity per atomic percent in our samples can be expressed as a universal function ofT/T K at the lowest temperatures underT K/4.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    J. Kondo,Progr. Theoret. Phys. 32, 37 (1964).

  2. 2.

    K. Yosida,Phys. Rev. 106, 893 (1957);107, 396 (1957).

  3. 3.

    Y. Nagaoka,Phys. Rev. 138A, 1112 (1965).

  4. 4.

    H. Suhl and D. Wong,Physics 3, 17 (1967).

  5. 5.

    D. R. Hamann,Phys. Rev. 158, 570 (1967).

  6. 6.

    M. D. Daybell and W. A. Steyert,Phys. Rev. Letters 18, 398 (1967);Phys. Rev. 167, 536 (1968).

  7. 7.

    M. D. Daybell, W. P. Pratt and W. A. Steyert,Phys. Rev. Letters 21, 353 (1968).

  8. 8.

    K. Svensson, inProc. Xth Int. Conf. Low Temp. Phys. Moscow, 1966, Vol. IV, p. 267.

  9. 9.

    E. F. Wassermann, H. Falke, and H. P. Jablonski, inProc. 12th Int. Conf. Low Temp. Phys. Kyoto, 1970, p. 243:Solid State Commun. 9, 1171 (1971).

  10. 10.

    S. G. Humble, K. Svensson, and H. U. Åström,Physica Scripta 1, 151 (1970).

  11. 11.

    A. Kraut and H. Wollenberger,Solid State Commun. 9, 1169 (1971).

  12. 12.

    E. Brewig, W. Kierspe, U. Schotte, and D. Wagner,J. Phys. Chem. Solids 30, 483 (1969).

  13. 13.

    E. L. Christenson,J. Appl. Phys. 34, 1485 (1963).

  14. 14.

    J. E. A. Alderson and C. M. Hurd,J. Phys. Chem. Solids 32, 2075 (1971).

  15. 15.

    W. M. Star, Doctorate Thesis, Kammerlingh Onnes Laboratory, Leiden, 1971.

  16. 16.

    J. L. Tholence and R. Tournier,Phys. Rev. Letters 25, 867 (1970).

  17. 17.

    J. W. Loram, T. E. Whall, and P. J. Ford,Phys. Rev. B 2, 857 (1970).

  18. 18.

    B. Knook, Doctorate Thesis, University of Leiden, 1962.

  19. 19.

    J. S. Schilling, W. B. Holzapfel, and E. Luscher,Phys. Letters 38A, 29 (1972).

  20. 20.

    G. K. White,Can. J. Phys. 33, 19 (1955).

  21. 21.

    P. L. Garbarino and C. A. Reynolds,Phys. Rev. 134, 167 (1970).

  22. 22.

    H. U. Everts and J. Keller,Z. Phys. 281, 240 (1970).

  23. 23.

    W. M. Star and G. J. Nieuwenhuys,Phys. Letters 30A, 22 (1969).

  24. 24.

    A. P. Klein,Phys. Rev. 172, 520 (1968).

  25. 25.

    A. A. Abrikosov,Zh. Eksperim. i Teor. Fiz. 53, 2109 (1967);Soviet Phys.—JETP 26, 168 (1968).

  26. 26.

    N. Rivier and M. J. Zuckermann,Phys. Rev. Letters 21, 904 (1968).

  27. 27.

    M. J. Levine, T. V. Ramakrishnan, and R. A. Weiner,Phys. Rev. Letters 20, 1370 (1968).

  28. 28.

    P. Lederer and D. L. Mills,Solid State Commun. 5, 131 (1967);Phys. Rev. 165, 837 (1968);Phys. Rev. Letters 19, 904 (1968).

  29. 29.

    A. P. Caplin and C. Rizzuto,Phys. Rev. Letters 21, 746 (1968).

  30. 30.

    Y. Nagaoka,J. Phys. Chem. Solids 27, 1139 (1966).

  31. 31.

    E. Boucai, B. Lecoanet, J. Pilon, J. L. Tholence and R. Tournier,Phys. Rev. B 3, 3834 (1971).

  32. 32.

    R. Tournier and A. Blandin,Phys. Rev. Letters 24, 397 (1970).

  33. 33.

    P. G. de Gennes,J. Phys. Radium 23, 630 (1962); J. Friedel and A. Guinier (eds.),Metallic Solid Solutions (Benjamin, New York, 1963), Chap. VI.

  34. 34.

    M. S. R. Chari,Phys. Kond. Materie 11, 317 (1970).

  35. 35.

    M. S. R. Chari, N. S. Natarajan, and R. G. Sharma,J. Low Temp. Phys. 4, 503 (1971).

  36. 36.

    M. S. R. Chari, N. S. Natarajan, and R. G. Sharma,J. Low Temp. Phys. 5, 197 (1971).

  37. 37.

    D. Korn,Z. Physik 238, 275 (1970).

  38. 38.

    H. Wiebking,Z. Physik 232, 126 (1970).

  39. 39.

    M. S. R. Chari, N. S. Natarajan, and R. G. Sharma,J. Low Temp. Phys. 10, 299 (1973).

  40. 40.

    J. Souletie and R. Tournier,J. de Phys. Suppl. 32, C1 (1971).

  41. 41.

    W. Buckel and R. Hilsch,Z. Physik 132, 420 (1952);138, 109 (1954).

  42. 42.

    P. F. Chester and G. O. Jones,Phil. Mag. 44, 1284 (1953).

  43. 43.

    J. A. Applebaum and J. Kondo,Phys. Rev. Letters 19, 906 (1967).

  44. 44.

    D. R. Hamann and J. A. Applebaum,Phys. Rev. 180, 334 (1969).

  45. 45.

    A. J. Heeger, L. B. Welsh, M. A. Jensen, and G. Gladstone,Phys. Rev. 172, 302 (1968).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sharma, R.G., Chari, M.S.R. Effect of annealing on the anomalous electrical resistivity of dilute copper-iron alloys at low temperatures. J Low Temp Phys 13, 553–571 (1973). https://doi.org/10.1007/BF00656545

Download citation

Keywords

  • Iron
  • Helium
  • Electrical Resistivity
  • Iron Concentration
  • Resistivity Measurement