Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Radiation-stimulated superconductivity

Abstract

Eliashberg has predicted that absorption of microwaves in a superconducting film leads to an increase of the energy gap by creating a nonequilibrium quasiparticle distribution. The frequency has to exceed the inverse relaxation time for inelastic scattering. In the present paper measurements are reported of the critical current of long, narrow, superconducting thin-film strips of aluminum subjected to high-frequency radiation (10 MHz–10 GHz). Above a critical frequency of about 200 MHz considerable enhancement of critical current and critical temperature is observed. Analysis of the results is performed by taking the critical current for a measure of the energy gap. The results are in reasonable agreement with Eliashberg's theory. As predicted, the transition between the superconducting and the normal states becomes of first order. The experimental results on critical current enhancement of micro-bridges (Dayem-Wyatt effect) can be explained consistently with gap enhancement.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    P. W. Anderson and A. H. Dayem,Phys. Rev. Lett. 13, 195 (1964).

  2. 2.

    P. E. Gregers-Hansen, M. T. Levinsen, and G. Fog Pedersen,J. Low Temp. Phys. 7, 99 (1972).

  3. 3.

    A. F. G. Wyatt, V. M. Dmitriev, W. S. Moore, and F. W. Sheard,Phys. Rev. Lett. 16, 1166 (1966).

  4. 4.

    A. H. Dayem and J. J. Wiegand,Phys. Rev. 155, 419 (1967).

  5. 5.

    A. F. G. Wyatt and D. H. Evans,Physica 55, 288 (1971).

  6. 6.

    Yu. I. Latyshev and F. Ya. Nad',Sov. Phys.—JETP Lett. 19, 380 (1974).

  7. 7.

    D. W. Jillie, J. Lukens, and Y. H. Kao,IEEE MAG 11, 671 (1975).

  8. 8.

    H. A. Notarys and J. E. Mercereau,Physica 55, 424 (1971).

  9. 9.

    H. A. Notarys, M. L. Yu, and J. E. Mercereau,Phys. Rev. Lett. 30, 743 (1973).

  10. 10.

    T. J. Tredwell and E. H. Jacobsen,Phys. Rev. B 13, 2931 (1976).

  11. 11.

    T. J. Tredwell and E. H. Jacobsen,Phys. Rev. Lett. 35, 244 (1975).

  12. 12.

    K. W. Shepard,Physica 55, 786 (1971).

  13. 13.

    W. H. Henkels, Ph.D. Thesis, Cornell (1974), and private communication.

  14. 14.

    T. M. Klapwijk and J. E. Mooij,Physica 81B, 132 (1976).

  15. 15.

    T. K. Hunt and J. E. Mercereau,Phys. Rev. Lett. 30, 551 (1967).

  16. 16.

    P. V. Christiansen, E. B. Hansen, and G. J. Sjöström,J. Low Temp. Phys. 4, 349 (1971).

  17. 17.

    M. T. Levinsen,Rev. Phys. Appl. 9, 135 (1974).

  18. 18.

    P. E. Lindelof,Solid State Commun. 18, 283 (1976).

  19. 19.

    G. M. Eliashberg,Sov. Phys.—JETP Lett. 11, 114 (1970).

  20. 20.

    G. M. Eliashberg,Sov. Phys.—JETP 34, 668 (1972).

  21. 21.

    B. I. Ivlev and G. M. Eliashberg,Sov. Phys.—JETP Lett. 13, 333 (1971).

  22. 22.

    B. I. Ivlev, S. G. Lisitsyn, and G. M. Eliashberg,J. Low Temp. Phys. 10, 449 (1973).

  23. 23.

    A. Schmid, to be published.

  24. 24.

    D. Saint James, G. Sarma, and E. J. Thomas,Type II Superconductivity (Pergamon, 1969), Chapter 5.

  25. 25.

    P. G. de Gennes,Superconductivity of Metals and Alloys (Benjamin, New York, 1966).

  26. 26.

    M. Tinkham,Introduction to Superconductivity (McGraw-Hill, New York, 1975).

  27. 27.

    T. K. Hunt,Phys. Rev. 151, 325 (1966).

  28. 28.

    W. J. Skocpol, Ph.D. Thesis, Harvard (1974).

  29. 29.

    V. P. Andratskii, L. M. Grundel, V. N. Gubankov, and N. B. Pavlov,Sov. Phys.—JETP 38, 794 (1974).

  30. 30.

    W. J. Skocpol, M. R. Beasley, and M. Tinkham,J. Appl. Phys. 45, 4054 (1974).

  31. 31.

    F. R. Fickett,Cryogenics 11, 349 (1971).

  32. 32.

    T. M. Klapwijk and J. E. Mooij,Phys. Lett. 57A, 97 (1976).

  33. 33.

    NBS Technical Note 385.

  34. 34.

    J. L. Levine and S. Y. Hsieh,Physica 55, 471 (1971).

  35. 35.

    T. M. Klapwijk and T. B. Veenstra,Phys. Lett. 47A, 351 (1974).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Klapwijk, T.M., van den Bergh, J.N. & Mooij, J.E. Radiation-stimulated superconductivity. J Low Temp Phys 26, 385–405 (1977). https://doi.org/10.1007/BF00655418

Download citation

Keywords

  • Microwave
  • Relaxation Time
  • Normal State
  • Critical Temperature
  • Magnetic Material