Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Thermal conductivity of additively colored MgO

  • 33 Accesses

  • 8 Citations

Abstract

The thermal conductivity of MgO additively colored in magnesium vapor has been measured in the temperature range 1–55 K. These measurements have been compared to the pure crystal thermal conductivity data. There is a “dip” in the thermal conductivity vs. temperature curve of the additively colored specimen near 20 K, where the thermal conductivity is depressed to one-fifth of the pure crystal value. The “dip” is attributed to resonant phonon scattering associated with quasilocalized modes of theF center. After UV irradiation, resulting in partialFF + conversion, the thermal conductivity “dip” was found to be much weaker. The increase in thermal conductivity of the bleached sample is attributed to a relaxation of neighboring ions due to the different charge state of the defect. A successful fit to the thermal conductivity data has been made using the Debye model of solids and a defect scattering rate consisting of a resonance expression plus Rayleigh scattering term. A good fit can be made to the data of the bleached specimen by varying only the parameter associated with concentration ofF centers.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    D. S. Kupperman, G. Kurz, and H. Weinstock,J. Low Temp. Phys. 10, 193 (1973).

  2. 2.

    C. T. Walker,Phys. Rev. 132, 1963 (1963).

  3. 3.

    M. V. Klein inPhysics of Color Centers, W. B. Fowler, ed. (Academic Press, New York, 1968).

  4. 4.

    M. Wagner,Phys. Rev. 131, 1443 (1963).

  5. 5.

    J. A. Krumhansl, inProc. Intern. Conf. Lattice Dynamics, Copenhagen 1963 (Pergamon Press, Oxford, 1965).

  6. 6.

    C. T. Walker and R. O. Pohl,Phys. Rev. 131, 1433 (1963).

  7. 7.

    C. W. McCombie and J. Slater,Proc. Phys. Soc. 84, 499 (1964).

  8. 8.

    J. W. Schwartz and C. T. Walker,Phys. Rev. 155, 959 (1967).

  9. 9.

    M. V. Klein,Phys. Rev. 186, 839 (1969).

  10. 10.

    Y. Chen, J. L. Kolopus, and W. A. Sibley,Phys. Rev. 186, 865 (1969).

  11. 11.

    L. A. Kappers, R. L. Kroes, and E. B. Hensley,Phys. Rev. B1, 4151 (1970).

  12. 12.

    B. Henderson and R. D. King,Phil. Mag. 13, 1149 (1966).

  13. 13.

    J. C. Kemp, J. C. Cheng, E. H. Izen, and F. A. Modine,Phys. Rev. 179, 818 (1969).

  14. 14.

    Y. Chen, R. T. Williams, and W. A. Sibley,Phys. Rev. 182, 960 (1969).

  15. 15.

    L. A. Kappers and E. B. Hensley,Phys. Rev. B6, 2475 (1972).

  16. 16.

    I. K. Ludlow and W. A. Runciman,Proc. Phys. Soc. (London)86, 1081 (1965).

  17. 17.

    R. D. King and B. Henderson,Proc. Phys. Soc. (London)89, 153 (1966).

  18. 18.

    Y. Chen and W. A. Sibley,Phil. Mag. 20, 217 (1969).

  19. 19.

    Y. Chen, D. L. Trueblood, O. E. Schow, and H. T. Tohver,J. Phys. C: Solid State Phys. 3, 2501 (1970).

  20. 20.

    A. E. Hughes and B. Henderson, inDefects in Crystalline Solids, J. H. Crawford, Jr. and L. M. Slifkin, eds. (Plenum Press, New York, 1972).

  21. 21.

    R. A. Guenther and H. Weinstock,J. Appl. Phys. 42, 3790 (1971).

  22. 22.

    P. Carruthers,Rev. Mod. Phys. 33, 92 (1961).

Download references

Author information

Additional information

Supported by U.S. Atomic Energy Commission.

Operated by Union Carbide Corporation for the U.S. Atomic Energy Commission.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kupperman, D.S., Weinstock, H. & Chen, Y. Thermal conductivity of additively colored MgO. J Low Temp Phys 14, 277–286 (1974). https://doi.org/10.1007/BF00655334

Download citation

Keywords

  • Color
  • Magnesium
  • Thermal Conductivity
  • Magnetic Material
  • Charge State