Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Gravitational flow of superfluid helium through small orifices

  • 30 Accesses

  • 9 Citations

Abstract

We present data on the flow of superfluid helium through channels of diameters 2.5 and 5.0 µm. Three modes of flow are observed: (1) flow that can be identified with the thermal nucleation of vorticity, (2) flow described by Δz ∝ (t − t 0), where Δz is the gravitational head andt the time, and (3) flow described by (Δz)1/2 ∝ (t − t 0). Associated with the third mode, flows appear with a critical velocity close to that of the Feynman prediction for small channels.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    P. L. Richards and P. W. Anderson,Phys. Rev. Lett. 14, 540 (1965).

  2. 2.

    G. B. Hess,Phys. Rev. Lett. 27, 977 (1971).

  3. 3.

    George L. Schofield, Jr., Ph.D. Thesis, Univ. of Michigan (unpublished).

  4. 4.

    J. P. Hulin, C. Laroche, A. Libchaber, and B. Perrin,Phys. Rev. A 5, 1830 (1972).

  5. 5.

    B. Perrin, D. D'Humieres, C. Laroche, J. P. Hulin, and A. Libchaber,Phys. Rev. Lett. 28, 1551 (1972).

  6. 6.

    J. P. Hulin, D. D'Humieres, B. Perrin, and A. Libchaber, to be published inPhys. Rev. A; and A. Libchaber, private communication.

  7. 7.

    W. J. Trela and W. M. Fairbank,Phys. Rev. Lett. 19, 822 (1967).

  8. 8.

    G. Careri, M. Cerdonio, and F. Dupré,Phys. Rev. 167, 233 (1968).

  9. 9.

    M. E. Banton,Bull. Am. Phys. Soc. Series II 16, 640 (1971).

  10. 10.

    J. G. Daunt and K. Mendelssohn,Proc. Roy. Soc. (London)A170, 423, 439 (1939).

  11. 11.

    L. D. Landau,J. of Physics V, 71 (1941).

  12. 12.

    R. P. Feynman,Phys. Rev. 94, 262 (1954).

  13. 13.

    S. V. Iordanskii,Soviet Phys.—JETP 21, 467 (1965).

  14. 14.

    J. S. Langer and M. E. Fisher,Phys. Rev. Lett. 19, 560 (1967).

  15. 15.

    J. S. Langer and J. D. Reppy, inProgress in Low Temperature Physics, C. J. Gorter, ed., (North-Holland, Amsterdam, 1970), Vol. VI, p. 1ff.

  16. 16.

    L. J. Campbell,J. Low Temp. Phys. 8, 105 (1972).

  17. 17.

    P. W. Anderson,Rev. Mod. Phys. 38, 298 (1966).

  18. 18.

    H. A. Notarys,Phys. Rev. Lett. 22, 1240 (1969).

  19. 19.

    R. DeBruyn Ouboter, K. W. Taconis, and W. M. van Alphen, inProgress in Low Temperature Physics, C. J. Gorter, ed. (North-Holland, Amsterdam, 1967), Vol. V, p. 44ff.

  20. 20.

    G. B. Hess,Phys. Rev. Lett. 29, 96 (1972).

  21. 21.

    C. Boghosian, H. Meyer, and J. E. Rives,Phys. Rev. 146, 110 (1966).

  22. 22.

    W. E. Keller and E. F. Hammel,Cryogenics 5, 245 (1965).

  23. 23.

    W. C. Black, Jr., W. R. Roach, and J. C. Wheatley,Rev. Sci. Instr. 35, 587 (1964).

  24. 24.

    A. C. Anderson,Rev. Sci. Instr. 39, 605 (1966).

  25. 25.

    W. J. Glaberson and R. J. Donnelly,Phys. Rev. 141, 208 (1966).

  26. 26.

    P. H. Roberts and R. J. Donnelly,Phys. Lett. 31A, 137 (1970).

  27. 27.

    W. E. Keller and E. F. Hammel,Physics 2, 221 (1966).

  28. 28.

    R. B. Hallock, private communication.

  29. 29.

    L. J. Campbell,J. Low Temp. Phys. 3, 175 (1970).

  30. 30.

    R. J. Donnelly,Phys. Lett. 17, 109 (1965).

  31. 31.

    A. L. Fetter, inLectures in Theoretical Physics, Vol. IX-B ofQuantum Fluids and Nuclear Matter, K. T. Mahanthappa and W. E. Brittin, eds. (Gordon and Breach Science Publishers, New York, 1969), p. 325.

Download references

Author information

Additional information

Research supported in part by a grant from the National Science Foundation and in part by the U.S. Atomic Energy Commission.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Banton, M.E. Gravitational flow of superfluid helium through small orifices. J Low Temp Phys 16, 211–228 (1974). https://doi.org/10.1007/BF00655316

Download citation

Keywords

  • Helium
  • Vorticity
  • Magnetic Material
  • Critical Velocity
  • Small Channel