Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

High-resolution measurements of the heat capacity of MnBr2·4H2O near its Néel temperature

  • 24 Accesses

  • 10 Citations

Abstract

The heat capacityC P of the antiferromagnet MnBr2 ·4H2O has been measured for polycrystalline and single-crystal samples nearT N(∼2.123 K) with temperature resolution of ∼ 1×10−6 K. Similar rounding of the lambda anomaly is found in both cases. For ε ≡ |1 −T/T N| ≲ 10−1 all data can be well fitted by assuming the samples to consist of many independent subsystems obeying the same power laws but with a Gaussian distribution ofT N's having a width of 1.1×10−3 K. ForT>T N, we findC P ∝ ε−0.12, essentially as predicted for three-dimensional Ising models in the critical region. ForT<T N and 10−3 ≲ ε ≲ 10−1,C P ∝ ln ε, which approximates Ising model behavior in this interval but is not expected to be valid for ε ≲ 10−4. ForT>T N and ε ≲ 2.5×10−1, CP agrees well with predictions for the classical Heisenberg model. This crossover at ε ≈ 10−1 is consistent with the known anisotropy of the salt and with present theory. The data forT>T N in the interval 10−4 ≲ ε ≲ 10−3, while not in the range of obvious rounding, appear to be strongly influenced by the mechanism responsible for that rounding.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    H. E. Stanley,Introduction to Phase Transitions and Critical Phenomena (Oxford University Press, 1971); C. Domb and M. S. Green, eds.,Phase Transitions and Critical Phenomena (Academic Press, London, several volumes, 1972 et seq.).

  2. 2.

    L. P. Kadanoffet al., Rev. Mod. Phys. 39, 395 (1967).

  3. 3.

    M. E. Fisher,Rep. Prog. Phys. 30, 615 (1967).

  4. 4.

    P. Heller,Rep. Prog. Phys. 30, 731 (1967).

  5. 5.

    L. J. de Jongh and A. R. Miedema,Adv. Phys. 23, 1 (1974).

  6. 6.

    M. E. Fisher,Rev. Mod. Phys. 46, 597 (1974).

  7. 7.

    D. J. Kapadnis and R. Hartmans,Physica 22, 181 (1956).

  8. 8.

    J. H. Schelleng and S. A. Friedberg,J. Appl. Phys. 34, 1087 (1963);Phys. Rev. 185, 728 (1969).

  9. 9.

    A. R. Miedema, R. F. Wielinga, and W. J. Huiskamp,Physica 31, 835 (1965).

  10. 10.

    L. W. Kreps and S. A. Friedberg,Bull. Am. Phys. Soc. 17, 299 (1972).

  11. 11.

    R. D. Hempstead and J. M. Mochel,Phys. Rev. B7, 287 (1973).

  12. 12.

    P. Groth,Chemische Kristallographie (Engelmann, Leipzig, 1906), Vol. 1, p. 245.

  13. 13.

    A. Zalkin, J. D. Forrester, and D. H. Templeton,Inorg. Chem. 3, 529 (1964).

  14. 14.

    R. G. Bowers and M. E. Woolf,Phys. Rev. 177, 917 (1969).

  15. 15.

    H. M. Gijsman, N. J. Poulis, and J. vanden Handel,Physica 25, 954 (1959).

  16. 16.

    V. A. Schmidt and S. A. Friedberg,J. Appl. Phys. 38, 5319 (1967).

  17. 17.

    R. F. Altman, S. Spooner, D. P. Landau, and J. E. Rives,Phys. Rev. B 11, 458 (1975).

  18. 18.

    R. D. Spence and V. Nagarajan,Phys. Rev. 149, 191 (1966).

  19. 19.

    L. Berger, private communication cited in Ref. 8.

  20. 20.

    M. E. Fisher and M. F. Sykes,Physica 28, 939 (1966).

  21. 21.

    K. D. Bowers and J. Owen,Rep. Prog. Phys. 18, 304 (1955).

  22. 22.

    F. Keffer,Phys. Rev. 87, 608 (1952).

  23. 23.

    L. W. Kreps, Thesis, Carnegie-Mellon University (1971).

  24. 24.

    F. Wegner,Phys. Rev. B 5, 4529 (1972).

  25. 25. (a)

    A. Ahlers,Phys. Rev. A 8, 530 (1973),

  26. 25(b)

    G. Ahlers, A. Kornblit, and M. B. Salamon,Phys. Rev. B 9, 3932 (1974),

  27. 25(c)

    G. Ahlers and A. Kornblit,Phys. Rev. B 12, 1938 (1975).

  28. 26.

    P. C. Mangelsdorf,J. Appl. Phys. 30, 442 (1959); B. E. Keen, D. P. Landau, and W. P. Wolf,J. Appl. Phys. 38, 967 (1967).

  29. 27.

    B. J. van der Hoeven, D. T. Teaney, and V. L. Moruzzi,Phys. Rev. Lett. 20, 719 (1968).

  30. 28.

    C. Domb and R. G. Bowers,J. Phys. C. 2, 755 (1969).

  31. 29.

    M. F. Sykes, J. L. Martin, and D. L. Hunter,Proc. Phys. Soc. 91, 671 (1967).

  32. 30.

    T. Yamamoto, D. Tanimoto, Y. Yasuda, and K. O. Okada,Critical Phenomena (Nat. Bur. Std., Misc. Publ. 273, Washington, D.C., 1966), p. 86.

  33. 31.

    R. F. Wielinga, Thesis, University of Leiden (1968).

  34. 32.

    R. W. Wielinga, H. W. J. Blöte, J. A. Roest, and W. J. Huiskamp,Physica 34, 223 (1967).

  35. 33.

    C. Domb,Adv. Phys. 19, 339 (1970).

  36. 34.

    G. S. Dixon and J. E. Rives,Phys. Rev. 177, 871 (1969).

  37. 35.

    J. D. Cashion, A. H. Cooke, L. A. Koel, D. M. Martin, and M. R. Wells, inProc. Colloque International du C.N.R.S. sur les Éléments des Terres Rares, Paris, 1970, p. 417.

  38. 36.

    J. W. Stout and E. Catalano,J. Chem. Phys. 23, 2013 (1955).

  39. 37.

    W. L. Johnson and W. Reese,Phys. Rev. B 2, 1355 (1970).

  40. 38.

    D. Jasnow and M. Wortis,Phys. Rev. 176, 739 (1968).

  41. 39.

    E. Riedel and F. Wegner,Z. Physik 225, 195 (1969).

  42. 40.

    P. Pfeuty, D. Jasnow, and M. E. Fisher,Phys. Rev. B 10, 2088 (1974).

  43. 41.

    C. Domb and M. F. Sykes,Phys. Rev. 128, 168 (1962).

  44. 42.

    R. B. Griffiths,Phys. Rev. Lett. 24, 1479 (1970).

  45. 43.

    L. P. Kadanoff, inProceedings of the International School “Enrico Fermi” Course L1, M. S. Green, ed. (Academic Press, New York, 1971).

  46. 44.

    D. S. Gaunt and C. Domb,J. Phys. C 1, 1038 (1968).

  47. 45.

    M. E. Fisher,J. Appl. Phys. 38, 981 (1967).

  48. 46.

    J. W. Philp, J. R. Gonano, and E. D. Adams,Phys. Rev. 188, 973 (1968).

  49. 47.

    A. B. Pippard,Classical Thermodynamics (Cambridge, 1957), p. 143.

  50. 48.

    G. A. Baker and J. W. Essam,Phys. Rev. Lett. 24, 447 (1970).

  51. 49.

    M. E. Fisher and A. E. Ferdinand,Phys. Rev. Lett. 19, 169 (1967).

  52. 50.

    A. E. Ferdinand and M. E. Fisher,Phys. Rev. 185, 832 (1969).

  53. 51.

    J. Skalyo, Jr. and S. A. Friedberg,Phys. Rev. Lett. 13, 133 (1964).

  54. 52.

    L. W. Kreps and S. A. Friedberg, to be published.

  55. 53.

    J. J. White, H. I. Song, J. E. Rives, and D. P. Landau,Phys. Rev. B 4, 4605 (1971).

Download references

Author information

Additional information

Work supported by the National Science Foundation and the Office of Naval Research. Based on a thesis submitted by L.W.K. to Carnegie-Mellon University in partial fulfillment of the requirements for the Ph.D. degree. A preliminary account of this work was presented at the Atlantic City meeting of the American Physical Society, March 1972 [Bull. Am. Phys. Soc. 17, 299 (1972)].

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kreps, L.W., Friedberg, S.A. High-resolution measurements of the heat capacity of MnBr2·4H2O near its Néel temperature. J Low Temp Phys 26, 317–338 (1977). https://doi.org/10.1007/BF00654576

Download citation

Keywords

  • 4H2O
  • Anisotropy
  • Gaussian Distribution
  • Heat Capacity
  • Magnetic Material