Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Superfluidity of solid4He

  • 20 Accesses

  • 18 Citations

Abstract

Using a procedure suggested by Leggett, an upper bound to the superfluid fraction in ground state solid4He slightly above the melting density is obtained numerically. The value obtained is 0.3±0.1. To judge the usefulness of this upper bound, we examine the conditions under which a symmetrized product of single-particle functions times a Jastrow function exhibits ODLRO, a necessary and sufficient condition for superfluid flow. It is found that ifU ij (U ij=ί φ i (x j (x) dx, and φ i (x) is a single-particle wave function centered on the pointi) satisfies σ′i U ij>x, wherex varies from unity for long rangeU ij (i.e.,U ij decreases slowly enough asR i−Rj increases) to a value of 12/7 for nearest-neighbor overlap only in the hcp lattice, then there is ODLRO, but not otherwise. Therefore, if the accepted single-particle functions are the true ones, then there is no ODLRO in solid4He, since the overlap is too small. We have explored the possibility of adding a flat tail, of magnitude λ′(VN)−1/2 to the accepted single-particle functions. It is shown that if λ → 1 [λ2=(λ′)2+2(vNV −1)1/2, andv=(ί φi(x)dx)2], the system wave function becomes a pure Jastrow function, whereas if λ2−1≲−2×10−1, we have in effect the case where λ′=0; furthermore, there is ODLRO if λ2−1∼−2×10−1. It is also concluded that the superfluid fraction upper bound of 0.3±0.1 obtained here as well as one suggested by Leggett are not very useful. We have not attempted to establish if there is some value of λ satisfying the above inequality such that the ground-state energy is lower than the value it takes for λ′=0.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    A. J. Leggett,Phys. Rev. Letters 25, 1543 (1970).

  2. 2.

    R. A. Guyer,Phys. Rev. Letters 26, 174 (1971); W. J. Mullin,Phys. Rev. Letters 26, 611 (1971).

  3. 3.

    N. Byers and C. N. Yang,Phys. Rev. Letters 7, 46 (1961).

  4. 4.

    L. H. Nossanow,Phys. Rev. 146, 120 (1966); R. A. Guyer and L. I. Zane,Phys. Rev. 188, 445 (1969); R. A. Guyer,Solid State Physics, Vol. 23, Seitz, Turnball, and Ehrenreich, eds. (Academic Press, New York, 1969), p. 402.

  5. 5.

    B. H. Brandow,Ann. Phys. (New York)74, 112 (1972).

  6. 6.

    E. B. Osgood, V. J. Minkiewicz, T. A. Kitchens, and G. Shirane,Phys. Rev. A 5, 1537 (1972); N. R. Werthamer,Phys. Rev. Letters 28, 1102 (1972).

  7. 7.

    D. Sherrington,Phys. Letters 37A, 223 (1971); W. Kohn and D. Sherrington,Rev. Mod. Phys. 42, 1 (1970).

  8. 8.

    G. V. Chester,Phys. Rev. A 2, 256 (1970); L. Reatto,Phys. Rev. 183, 334 (1969); J. F. Fernández and H. A. Gersch,Phys. Rev. A 7, 239 (1973).

  9. 9.

    C. N. Yang,Rev. Mod. Phys. 34, 644 (1962).

  10. 10.

    O. Penrose and L. Onsager,Phys. Rev. 104, 576 (1956).

  11. 11.

    E. Stanley,Introduction to Phase Transitions and Critical Phenomena (Clarendon Press, Oxford, 1971), Chap. 9.

  12. 12.

    C. Domb,Adv. Chem. Phys. 15, 229 (1969).

  13. 13.

    W. L. McMillan,Phys. Rev. 138, 442 (1965).

  14. 14.

    J. P. Hansen,Phys. Letters 30A, 214 (1969); J. P. Hansen and E. L. Pollock,Phys. Rev. A 5, 2651 (1972).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fernández, J.F., Puma, M. Superfluidity of solid4He. J Low Temp Phys 17, 131–141 (1974). https://doi.org/10.1007/BF00654549

Download citation

Keywords

  • Wave Function
  • Magnetic Material
  • Function Time
  • System Wave
  • Symmetrize Product