Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

A generation mechanism of triboelectricity due to the reaction of mechanoradicals with mechanoions which are produced by mechanical fracture of solid polymer

Abstract

Mechanical fracture of solid polymer under vacuum at 77K can, in principle, produce both mechanoradicals and mechanoanions which are formed by homolytic and heterolytic scission of carbon-carbon bonds in the polymer main chain. The production of mechanoanions was claimed by a detection of tetracyanoethylene (TCNE) anion radical (TCNE), which was observed by electron spin resonance (ESR) spectroscopy using the electron trapping method with TCNE.

A novel mechanism for generating triboelectricity is proposed. The charge carrer is an electron. The electron donor is the mechanoanion A, which is produced by heterolytic carbon-carbon bond scission of the main chain of polymer A. The electron acceptor is the mechanoradical B·, which is produced by homolytic carbon-carbon bond scission of the main chain of polymer B. Charge separation is due to an electron transfer from the mechanoanion to the mechanoradical when in contact. It is possible to speculate the sign of the charge induced by friction from the electron release potential of A, Pr(A), and the molecular electron affinity of B·, Ea(B·). The triboelectric series deduced from our mechanism is PMMA-PP-PE-PVDF-PTFE, in which polymers having a relatively low Pr(A) to high Pr(A) or polymers having a relatively low Ea(B·) to high Ea(B·) are arranged. This order is identical with well-known triboelectric series.

This is a preview of subscription content, log in to check access.

References

  1. 1(a).

    For example: Hersh SP, Montgomery DJ (1956) Text Res J 26:903

  2. 1(b)

    Fukada E, Fowler JE (1958) Nature 181:693

  3. 1(c)

    Henniker J (1962) Nature 196:474

  4. 1(d)

    Duke CB, Fabish TJ (1978) J Appl Phys 49:315

  5. 2.

    Sakaguchi M, Yamakawa H, Sohma J (1974) J Polym Sci Polym Lett Ed, 12:193

  6. 3.

    Sakaguchi M, Sohma J (1975) J Polym Sci Polym Phys Ed 13:1233

  7. 4.

    Sakaguchi M, Kinpara H, Hori Y, Shimada S, Kashiwabara H (1984) Polymer 25:944

  8. 5.

    Sakaguchi M, Kinpara H, Hori Y, Shimada S, Kashiwabara H (1985) Polym Commun 26:142

  9. 6.

    Sakaguchi M, Kinpara H, Hori Y, Shimada S, Kashiwabara H (1987) J Polym Sci Polym Phys Ed 25:1431

  10. 7.

    Sakaguchi M, Kinpara H, Hori Y, Shimada S, Kashiwabara H (1988) J Polym Sci Polym Phys Ed 26:1307

  11. 8.

    Sakaguchi M, Kodama S, Edlund O, Sohma J (1974) J Polym Sci Polym Lett Ed 12:609

  12. 9.

    Iwasaki M (1974) J Magn Reson 16:417

  13. 10.

    Dewar MJS, Rezepa HS (1978) J Am Chem Sci 100:784

  14. 11.

    Kaplan ML, Haddon RC, Bramwell FB, Wundle F, Marshall JH, Cowan DO, Gronowitz S (1980) J Phys Chem 84:427

  15. 12.

    Butyagin P Yu, Kolbanov IV, Radtsiz VA (1964) Sov Phys-Solid State (Engl Transl) (1964) 5:1642

  16. 13.

    Campbell D, Peterlin A (1968) J Polym Sci B 6:481

  17. 14.

    DeVries KL, Roylance DK, Williams ML (1970) J Polym Sci A-1 82:237

  18. 15.

    Kausch HH (1971) J Polym Sci Part C 32:1

  19. 16.

    Peterlin A (1971) J Polym Sci Part C 32:297

  20. 17.

    Zhurkov SN, Zakrevskyi VA, Korsukov VE, Kuksenko VS (1972) J Polym Sci A-2 10:1509

  21. 18.

    Sohma J, Sakaguchi M (1976) Adv Polym Sci 20:109

  22. 19.

    Kausch HH (1977) Polymer Fracture, Springer-Verlag, Berlin, p 119

  23. 20.

    Andrews EH, Reed RE (1978) Adv Polym Sci (1978) 27:1

  24. 21.

    Sakaguchi M, Kinpara H, Hori Y, Shimada S, Kashiwabara H (1989) Macromolecules 22:1277

  25. 22.

    Sakaguchi M, Kinpara H, Hori Y, Shimada S, Kashiwabara H (1990) Macromolecules 23:5038

  26. 23.

    CRC Handbook of Chemistry and Physics, 69th ed, Weast RC Ed, CRC Press: Boca Raton, FL, 1988–1989; p E 64

  27. 24.

    Hersh SP, Montgomery DJ (1955) Text Res J 25:279

Download references

Author information

Additional information

Dedicated to Professor Hans-Henning Kausch on the occasion of his 60th birthday

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sakaguchi, M., Kashiwabara, H. A generation mechanism of triboelectricity due to the reaction of mechanoradicals with mechanoions which are produced by mechanical fracture of solid polymer. Colloid Polym Sci 270, 621–626 (1992). https://doi.org/10.1007/BF00654038

Download citation

Key words

  • Polymer
  • mechanical fracture
  • mechanoanion mechanoradicals
  • triboelectricity