Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Computerized series solution of relativistic equations of motion

Abstract

A method of solution of the equations of planetary motion is described. It consists of the use of numerical general perturbations in orbital elements and in rectangular coordinates. The solution is expanded in Fourier series in the mean anomaly with the aid of harmonic analysis and computerized series manipulation techniques. A detailed application to the relativistic motion of the planet Mercury is described both for Schwarzschild and isotropic coordinates.

This is a preview of subscription content, log in to check access.

References

  1. Anderson, J.: 1969,JPL Space Programs Summary, Vol. 37-50-3, p. 39.

  2. Brans, C. and Dicke, R. H.: 1961,Phys. Rev. 124, 925.

  3. Broucke, R.: 1969,Celes. Mech. 1, 110

  4. Broucke, R.: 1970,Astron. Astrophys. 6, 173.

  5. Broucke, R. and Garthwaite, K.: 1969,Celes. Mech. 1, 271.

  6. Brouwer, D. and Clemence, G. M.: 1961, inThe Solar System, University of Chicago Press, Chicago, p. 31–94.

  7. Clemence, G. M.: 1962,Astron. J. 67, 379.

  8. Estabrook, F. E.: 1969,Astrophys. J. 158, 81.

  9. Marsden, B. C. and Wright, P.: 1966, SAO Special Report 236, p. 101.

  10. Moyer, T.: 1965,Relativistic Equations of Motion, Master of Science Dissertation, UCLA.

  11. Muhleman, D. O. and Reichley, P.: 1965,JPL Space Programs Summary, Vol. 37-31-4, p. 342.

  12. O'Connell, R. F.: 1968,Am. J. Phys. 36, 757.

  13. Richard, J. P.: 1965,Compt. Rend. Acad. Paris. 260, 2139.

  14. Ross, D. K. and Schiff, L. I.: 1966,Phys. Rev. 141, 1215.

  15. Shapiro, I. I.: 1964,Phys. Rev. Letters 13, 789.

Download references

Author information

Additional information

Receipt delayed by the postal strike in Great Britain.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Broucke, R. Computerized series solution of relativistic equations of motion. Astrophys Space Sci 12, 366–377 (1971). https://doi.org/10.1007/BF00651425

Download citation

Keywords

  • Fourier
  • Mercury
  • Harmonic Analysis
  • Fourier Series
  • Relativistic Equation