Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Thermodynamics of aqueous gallium chloride. Heats of solution and dilution at 25°C

  • 138 Accesses

  • 5 Citations

Abstract

The heat of solution of GaCl3 and heats of dilution of single GaCl3 solutions in water and of mixed GaCl3−HCl solutions in HCl solutions (with a fixed HCl concentration of 0.1337 mol-kg−1 HCl) up to 4 mol-kg−1 GaCl3 were measured at 25°C. While in the acid solutions hydrolysis is suppressed to below 0.5% of total gallium concentration, the measurements in water allow evaluation of the effect of hydrolysis on the relative enthalpy. The Pitzer interaction model for excess properties of aqueous electrolytes was used to interpret the change in relative enthalpy with concentration. Pitzer parameters were derived by statistical inference using ridge regression. Their physical significance is supported by the heat of solution data. The measurements yield the following results for standard heats of formation and Pitzer parameters for the relative molar enthalpy at 25°C: \(\begin{gathered} H_{GaCl_3 }^ \circ = - 722 kJ - mol^{ - 1} ; \beta _{L,GaCl_3 }^0 = - 1.52 \times 10^{ - 3} kg - mol^{ - 1} - K^{ - 1} ; \hfill \\ \beta _{L,GaCl_3 }^1 = 1.21 \times 10^{ - 2} kg - mol^{ - 1} - K^{ - 1} ; C_{L,GaCl_3 } = - 1.42 \times 10^{ - 4} kg^2 - mol^{ - 2} - K^{ - 1} ; \hfill \\ H_{GaOHCl_2 }^ \circ = - 492 kJ - mol^{ - 1} ; H_{Ga(OH)_2 Cl}^0 = - 706 kJ - mol^{ - 1} ; \hfill \\ \end{gathered} \)

With these parameters the overall variance in the partial molar heat of solution at infinite dilution, extrapolated from the present experiments, is minimized to 0.35 kJ2-mol−2, while the experimental apparent molar heats of dilution are reproduced on average within 2.7 kJ-mol−1.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    P. F. M. van Gaans, H. A. J. Oonk, and G. Somsen, J. Solution Chem. 19, 831 (1990).

  2. 2.

    K. S. Pitzer, J. Phys. Chem. 77, 268 (1973).

  3. 3.

    L. F. Silvester and K. S. Pitzer, J. Solution Chem. 7, 327 (1978).

  4. 4.

    K. S. Pitzer, in, Activity Coefficients in Electrolyte Solutions, Vol. 1 (CRC Press, Boca Raton, 1979).

  5. 5.

    K. S. Pitzer, J. C. Peiper, and R. H.Busey, J. Phys. Chem. Ref. Data 13, 1 (1984).

  6. 6.

    J. C. van Miltenburg and G. J. K. van den Berg, Recueil des Actes JCAT XVIII, 361 (1987)

  7. 7.

    R. L. Montgomery, R. A. Melaugh, C.-C. Lau, G. H. Meier, H. H. Chan, and F. D. Rossini, J. Chem. Thermodyn, 9, 915 (1977).

  8. 8.

    D. J. Bradley and K. S. Pitzer, J. Phys. Chem. 83, 1599 (1979).

  9. 9.

    N. M. de Rooij, Mathematical Simulation of Biochemical Processes in Natural Waters by the Model CHARON (Delft Hydraulics, The Netherlands, 1987); N. M. de Rooij, CHARON Manual (Delft Hydraulics, The Netherlands, 1988).

  10. 10.

    D. D. Wagman, W. H. Evans, and V. B. Parker, J. Phys. Chem. Ref. Data 11, Suppl. 2 (1982).

  11. 11.

    P. F. M. van Gaans and S. P. Vriend, Comp. Geosc. 16, 933 (1990).

  12. 12.

    P. F. M. van Gaans, J. Solution Chem. (1990) (in press).

  13. 13.

    J. D. Beck, R. H. Wood, and N. N. Greenwood, Inorg. Chem. 9, 86 (1970).

  14. 14.

    J. Burgess and J. Kijowski, J. Inorg. Nucl. Chem. 43, 2649 (1981).

  15. 15.

    J. Burgess and J. Kijowski, J. Inorg. Nucl. Chem. 43, 2389 (1981).

  16. 16.

    W. A. Roth and A. Büchner, Ztschr. Elektrochem. 40, 87 (1934).

  17. 17.

    K. S. Pitzer, J. Solution Chem. 4, 249 (1975).

  18. 18.

    K. S. Pitzer, J. Phys. Chem 87, 2360 (1983).

  19. 19.

    R. N. Roy, J. J. Gibbons, J. C. Peiper, and K. S. Pitzer, J. Phys. Chem. 87, 2365 (1983).

  20. 20.

    K. S. Pitzer, J. R. Peterson, and L. F. Silvester, J. Solution Chem. 7, 45 (1978).

  21. 21.

    A. E. Hoerl, Chem. Eng. Prog. 58, 54 (1962).

  22. 22.

    D. W. Marquardt, Technometrics 12, 591 (1970).

  23. 23.

    A. E. Hoerl, R. W. Kennard, and K. F. Baldwin, Communications in Statistics 4, 105 (1975).

  24. 24.

    P. F. M. van Gaans, Comp. Geosc. 15, 843 (1989).

  25. 25.

    J. V. Beck and K. J. Amold, Parameter Estimation in Engineering and Science (Wiley, New York, 1977).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

van Gaans, P.F.M., van Miltenburg, J.C. Thermodynamics of aqueous gallium chloride. Heats of solution and dilution at 25°C. J Solution Chem 20, 335–360 (1991). https://doi.org/10.1007/BF00650447

Download citation

Key words

  • Aqueous GaCl3
  • heat of dilution
  • heat of solution
  • relative enthalpy
  • Pitzer model
  • hydrolysis