Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

The maximum mass of a neutron star

Abstract

We consider the possibility that gravitational energy may play a local as well as global role in the behavior of matter in strong gravitational fields. A particular idealized equation, suggested as representing uniform energy density in general relativity, is examined, and its stability with respect to oscillatory and convective perturbations shown to be consistent with general relativistic hydrodynamics, subject to a new physical effect predicted for the behavior of fluids moving in strong fields. We calculate from this idealized equation the mass of a non-rotating neutron star, obtaining a maximum surface redshift ofz=2.48 and a maximum core mass of 9.79 ρ 14 −1/2 MΘ. This compares withz=2.00 and 11.4 ρ 14 −1/2 MΘ for a Schwarzschild star (ρ=const.) and 6.8 ρ 14 −1/2 MΘ for a ‘causal’ star (dP/dρ≤1).

This is a preview of subscription content, log in to check access.

References

  1. Avni, Y.: 1977,Highlights of Astronomy 4, 137.

  2. Bahcall, J. N.: 1978,Ann. Rev. Astron. Astrophys. 16, 241.

  3. Baym, G. and Pethick, C.: 1975,Ann. Rev. Nucl. Sci. 25, 27.

  4. Baym, G. and Pethick, C.: 1979,Ann. Rev. Astron. Astrophys. 17, 415.

  5. Brecher, K. and Caporaso, G.: 1976,Nature 259, 377.

  6. Brecher, K. and Caporaso, G.: 1977,Ann. N.Y. Acad. Sci. 302, 47.

  7. Canuto, V.: 1976,Ann. N.Y. Acad. Sci. 302, 514.

  8. Chitre, D. M. and Hartle, J. B.: 1976,Astrophys. J. 207, 592.

  9. Cooperstock, F. I. and Sarracino, R. S.: 1978,J. Phys. A. Math. Gen. 11, 87.

  10. Cooperstock, F. I., Sarracino, R. S., and Bayin, S. S.: 1981,J. Phys. A. Math. Gen. 14, 181.

  11. Hartle, J. B.: 1978,Phys. Reports 46, 201.

  12. Hegyi, D. J., Lee, T.-S., and Cohen, J. M.: 1975,Astrophys. J. 201, 462.

  13. Hegyi, D. J., Lee, T.-S., and Cohen, J. M.: 1977,Ann. N.Y. Acad. Sci. 302, 404.

  14. Heintzman, H. and Hillebrandt, W.: 1975,Astron. Astrophys. 38, 51.

  15. Hillebrandt, W. and Steinmetz, K. D.: 1976,Astron. Astrophys. 53, 283.

  16. Kandrup, H.: 1982,Astrophys. J. 225, 691.

  17. Krotscheck, E. and Kundt, W.: 1978,Comm. Math. Phys. 60, 171.

  18. Misner, C. W., Thorne, K., and Wheeler, J. A.: 1973,Gravitation, Freeman, San Francisco.

  19. Møller, C.: 1958,Ann. Phys. 4, 347.

  20. Møller, C.: 1961,Ann. Phys. 12, 118.

  21. Rappaport, S. A. and Joss, P. C.: 1977,Ann. N.Y. Acad. Sci. 302, 460.

  22. Rhodes, C. E. and Ruffini, R.: 1974,Phys. Rev. Letters 32, 324.

  23. Sabbadini, A. G. and Hartle, J. B.: 1973,Astrophys. Space Sci. 25, 117.

  24. Schwarzschild, M.: 1958,Structure and Evolution of the Stars, Dover, New York.

  25. Taylor, J. H., Fowler, L. A., and McCullough, P. M.: 1979,Nature 277, 437.

  26. Thorne, K.: 1966a,High Energy Astrophysics, Proceedings of Course 35 of the Int. Summer School of Physics ‘Enrico Fermi’.

  27. Thorne, K.: 1966b,Astrophys. J. 144, 201.

  28. Tolman, R. C.: 1930,Phys. Rev. 35, 904.

  29. Tolman, R. C.: 1934,Relativity, Thermodynamics, and Cosmology, Clarendon Press, Oxford.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sarracino, R.S., Eccles, M.J. The maximum mass of a neutron star. Astrophys Space Sci 111, 375–381 (1985). https://doi.org/10.1007/BF00649976

Download citation

Keywords

  • Energy Density
  • Neutron Star
  • Gravitational Field
  • Maximum Surface
  • Strong Field