Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

The geometrization of hydromagnetic fluid flows

  • 27 Accesses

  • 4 Citations


In this paper certain theorems of theoretical interest have been established with the help of the geometrical properties of Maxwellian surface (which is spanned by the flow and field lines). These theorems shed light on the behaviour of steady incompressible hydromagnetic flows. The complex-lamellar acceleration and simple geodesic motion admitted by such flows have also been studied.

This is a preview of subscription content, log in to check access.


  1. Eisenhart, L. P.: 1940,An Introduction to Differential Geometry with the Use of the Tensor Calculus, Princeton University Press, Princeton.

  2. Gangwar, S. S. and Babu, R.: 1981,Acta Mech. 39, 139.

  3. Marris, A. W. and Passman, S. L.: 1969,Arch. Rat. Mech. Anal. 32, 29.

  4. Purushotham, G. and Rao, S. S.: 1969,Tensor (N.S.) 20, 343.

  5. Rogers, C. and Kingston, J. G.: 1974,SIAM J. Appl. Math. 26, 183.

  6. Singh, S. N. and Babu, R.: 1983,Nuovo Cimento 76B, 47.

  7. Singh, S. N. and Singh, H. P.: 1984,Astrophys. Space Sci. 102, 3.

  8. Singh, S. N. and Singh, H. P.: 1985,Acta Mech. 54, 181.

  9. Suryanarayana, E. R.: 1965,Proc. Am. Math. Soc. 16, 90.

  10. Truesdell, C.: 1954,The Kinematics of Vorticity, Indiana University Press, Bloomington.

  11. Wasserman, R. H.: 1967,Quart. J. Mech. Appl. Math. 20, 219.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Singh, S.N., Choubey, K.R. & Singh, B.P. The geometrization of hydromagnetic fluid flows. Astrophys Space Sci 124, 105–114 (1986). https://doi.org/10.1007/BF00649753

Download citation


  • Fluid Flow
  • Geometrical Property
  • Field Line
  • Theoretical Interest
  • Geodesic Motion