Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Coupled tracer diffusion coefficients of solubilizates in ionic micelle solutions from liquid chromatography

Abstract

The peak-broadening (Taylor dispersion) method is used to measure the diffusion of traces of alcohols (ethanol, n-butanol, n-hexanol, n-octanol, n-decanol) in aqueous solutions of sodium dodecylsulfate micelles at 25°C. A small quantity of each alcohol is injected into a long capillary tube containing a laminar stream of the micelle solution. The tracer diffusion coefficient is calculated from the broadened distribution of the eluted alcohol which is measured by differential refractometry. The fraction of each alcohol that is solubilized by the micelles is estimated from the drop in the diffusion coefficient relative to the value for the free alcohol molecules in pure water. The refractive index profiles across the dispersed samples are analyzed to obtain the cross-diffusion coefficient which gives the coupled flow of sodium dodecylsulfate produced by the tracer diffusion of each alcohol.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    P. Stilbs,J. Colloid Interface Sci. 87, 385 (1982).

  2. 2.

    D. Stilbs,J. Colloid Interface Sci. 89, 547 (1982).

  3. 3.

    D. Stigter, R. J. Williams, and K. J. Mysels,J. Phys. Chem. 59, 330 (1955).

  4. 4.

    R. M. Weinheimer, D. F. Evans, and E. L. Cussler,J. Colloid Interface Sci. 80, 257 (1981).

  5. 5.

    B. Lindman and B. Brun,J. Colloid Interface Sci. 42, 388 (1973).

  6. 6.

    B. Lindman, N. Kamenka, T.-M. Xathopoulis, B. Brun, and P.-G. Nilsson,J. Phys. Chem. 84, 2485 (1980).

  7. 7.

    B. Lindman, M.-C. Puyal, N. Kamenka, B. Brun, and G. Gunnarsson,J. Phys. Chem. 86, 1702 (1982).

  8. 8.

    B. Lindman, N. Kamenka, M.-C. Puyal, B. Brun, and B. Jönsson,J. Phys. Chem. 88, 53 (1984).

  9. 9.

    D. W. Armstrong,Separat. Purif. Methods 14, 213 (1985).

  10. 10.

    D. W. Armstrong, T. J. Ward, and A. Berthod,Anal. Chem. 58, 579 (1986).

  11. 11.

    D. W. Armstrong and F. Nome,Anal. Chem. 53, 1652 (1981).

  12. 12.

    D. W. Armstrong, R. A. Menges, and S. M. Han,J. Colloid Interface Sci. 126, 239 (1988).

  13. 13.

    K. C. Pratt and W. A. Wakeham,Proc. Roy. Soc. Lond. A336, 393 (1974).

  14. 14.

    K. C. Pratt and W. A. Wakeham,Proc. Roy. Soc. Lond. A342, 401 (1975).

  15. 15.

    A. Alizadeh, C. A. Nieto de Castro, and W. A. Wakeham,Int. J. Thermophys.1, 243 (1980).

  16. 16.

    A. A. Alizadeh and W. A. Wakeham,Int. J. Thermophys. 3, 307 (1982).

  17. 17.

    D. G. Leaist,Can. J. Chem. 68, 33 (1990).

  18. 18.

    H. J. V. Tyrrell and K. R. Harris,Diffusion in Liquids (Butterworths, London, 1984).

  19. 19.

    L. J. Gosting,Advances in Protein Chemistry 11, 430 (1956).

  20. 20.

    I. J. O'Donnel and L. J. Gosting, inThe Structure of Electrolytic Solutions, W. J. Hamer, ed., (Wiley, New York, 1959).

  21. 21.

    W. E. Price,J. Chem. Soc., Faraday Trans. I 84, 2431 (1988).

  22. 22.

    H. Margenau and G. M. Murphy,The Mathematics of Physics and Chemistry, 2nd edn., (Van Nostrand, Princeton, 1956), p. 517.

  23. 23.

    D. F. Evans, S. Mukherjee, D. J. Mitchell, and B. W. Ninham,J. Colloid Interface Sci. 93, 184 (1983).

  24. 24.

    J. P. Kratohvil and T. M. Aminabhavi,J. Phys. Chem. 86, 1254 (1981).

  25. 25.

    D. G. Leaist,J. Colloid Interface Sci. 111, 230 (1986).

  26. 26.

    B. R. Hammond and L. W. Stokes,Trans. Faraday Soc. 49, 890 (1953).

  27. 27.

    F. A. L. Dullien and L. W. Shemilt,Can. J. Chem. Eng. 39, 242 (1961).

  28. 28.

    P. A. Lyons and C. L. Sandquist,J. Am. Chem. Soc. 75, 3896 (1953).

  29. 29.

    I. Vikholm, G. Douhert, S. Backlund, and H. Høiland,J. Colloid Interface Sci. 116, 582 (1987).

  30. 30.

    G. Roux-Desgranges, A. H. Roux, J. P. E. Grolier, and A. Viallard,J. Solution Chem. 11, 357 (1982).

  31. 31.

    A. S. C. Lawrence and J. T. Pearson,Trans. Faraday Soc. 62, 495 (1966).

  32. 32.

    M. L. Corrin, W. D. Harkins, and S. H. Herzfeld,J. Phys. Chem. 54, 271 (1950).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Leaist, D.G. Coupled tracer diffusion coefficients of solubilizates in ionic micelle solutions from liquid chromatography. J Solution Chem 20, 175–186 (1991). https://doi.org/10.1007/BF00649526

Download citation

Key Words

  • Tracer diffusion
  • coupled diffusion
  • Taylor dispersion
  • solubilization
  • micelles
  • sodium dodecylsulfate
  • n-alcohols