Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Ion solvation in lithium battery electrolyte solutions. 1. Apparent molar volumes

Abstract

Apparent molar volumes, Vϕ(MX), of seven electrolytes (NaClO4, NaCF3SO3, NaBPh4, LiClO4, LiAsF6, Ph4AsCF3SO3 and KCF3SO3) have been determined by vibrating-tube densimetry in nonaqueous solvent mixtures of propylene carbonate (PC) with acetonitrile (AN), dimethoxyethane (DME) and tetrahydrofuran (THF). Vϕ(MX) was measured at an electrolyte concentration of 0.05M over the entire solvent composition range wherever possible. Ionic apparent molar volumes of transfer, ΔtVφ(ion), were obtained via the tetraphenylarsonium tetraphenylborate (TATB) assumption. ΔtVφ(ion) from PC to the mixed solvents are generally strongly negative for both cations and anions consistent with the greater compressibilities and lower dielectric constants of the cosolvents. In PC/AN mixtures cations and anions have similar values of ΔtVφ(ion) but in PC/DME and PC/THF mixtures they differ considerably. Cationic volumes show the expected dependence on ion-size but the differences among the anion volumes are much greater than expected at high cosolvent compositions. These effects are discussed in terms of preferential solvation and other solvent interactions. The implications of these findings for lithium batteries are briefly discussed.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    J. P. Gabano, ed.,Lithium Batteries, (Academic Press, New York, 1983).

  2. 2.

    A. K. Covington and T. Dickinson, eds.,Physical Chemistry of Organic Solvent Systems (Plenum Press, London, 1973).

  3. 3.

    O. Popovych and R. P. T. Tomkins,Nonaqueous Solution Chemistry (Wiley-Interscience, New York, 1981).

  4. 4.

    J. O. Besenhard and G. Eichinger,J. Electroanal. Chem. 68, 1 (1976).

  5. 5.

    G. Eichinger and J. O. Besenhard,J. Electroanal. Chem. 72, 1 (1976).

  6. 6.

    R. Zana, J. E. Desnoyers, G. Perron, R. L. Kay, and K. Lee,J. Phys. Chem. 86, 3996 (1982).

  7. 7.

    R. Zana, G. Perron, and J. E. Desnoyers,J. Solution Chem. 8, 729 (1979).

  8. 8.

    K. M. Abraham,J. Power Sources 14, 179 (1985).

  9. 9.

    E. A. Gomaa,Thermochim. Acta 80, 355 (1984).

  10. 10.

    V. R. Koch and J. H. Young,Science 204, 499 (1979).

  11. 11.

    K. Cedzynska, A. J. Parker, and P. Singh,J. Power Sources 10, 13 (1983).

  12. 12.

    Y. Marcus,Ion Solvation (Wiley, New York, 1985).

  13. 13.

    V. Gutmann,The Donor-Acceptor Approach to Molecular Interactions (Plenum Press, New York, 1978).

  14. 14.

    P. Atkins, Thesis, Murdoch University, 1989.

  15. 15.

    O. W. Kolling,Anal. Chem. 59, 674 (1987).

  16. 16.

    G. T. Hefter, submitted for publication.

  17. 17.

    F. J. Millero,Chem. Rev. 71, 147 (1971).

  18. 18.

    L. Avedikian, G. Perron, and J. E. Desnoyers,J. Solution Chem. 4, 331 (1975).

  19. 19.

    G. T. Hefter, J.-P. E. Grolier, and A. H. Roux,J. Solution Chem. 18, 229 (1989).

  20. 20.

    G. T. Hefter, J.-P. E. Grolier, A. H. Roux, and G. Roux-Desgranges,J. Solution Chem. 19, 207 (1990).

  21. 21.

    R. Zana and E. Yeager,J. Phys. Chem. 71, 521, 4241 (1967).

  22. 22.

    F. J. Millero,J. Phys. Chem. 75, 280 (1971).

  23. 23.

    J. I. Lankford and C. M. Criss,J. Solution Chem. 16, 753 (1987).

  24. 24.

    J. I. Kim,J. Phys. Chem. 82, 191 (1978).

  25. 25.

    M. R. J. Dack, K. J. Bird, and A. J. Parker,Austral. J. Chem. 28, 955 (1978).

  26. 26.

    J. Smid and A. M. Grotens,J. Phys. Chem. 77, 2377 (1973).

  27. 27.

    G. A. Bottomley and M. T. Bremers,Austral. J. Chem. 39, 1959 (1986); see also M. T. Bremers, Thesis, University of Western Australia, 1986.

  28. 28.

    U. Sen,Indian J. Chem. 16A, 104 (1978).

  29. 29.

    H. S. Frank and W. Y. Wen,Disc. Faraday Soc. 24, 133 (1957).

  30. 30.

    S. W. Benson and C. S. Copeland,J. Phys. Chem. 67, 1194 (1963).

  31. 31.

    S. D. Hamann and S. C. Lim,Austral. J. Chem. 7, 329 (1954).

  32. 32.

    P. Singh, I. D. MacLeod, and A. J. Parker,Austral. J. Chem. 36, 1675 (1983).

  33. 33.

    F. Kawaizumi and R. Zana,J. Phys. Chem. 78, 1099 (1974).

  34. 34.

    P. Atkins, G. T. Hefter, and P. Singh, submitted for publication.

  35. 35.

    I. S. Perelygin, M. A. Klimchuk, and E. L. Smol'skaya,Russ. J. Phys. Chem. 61, 51 (1987).

  36. 36.

    Y. Matsuda and H. Satake,J. Electrochem. Soc. 127, 877 (1980).

  37. 37.

    M. Salomon and E. Plichta,Electrochim. Acta 30, 113 (1985).

  38. 38.

    J. E. Huheey,Inorganic Chemistry, 3rd edn., (Harper International, Cambridge, USA, 1983).

Download references

Author information

Correspondence to G. T. Hefter.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Atkins, P., Hefter, G.T. & Singh, P. Ion solvation in lithium battery electrolyte solutions. 1. Apparent molar volumes. J Solution Chem 20, 1059–1078 (1991). https://doi.org/10.1007/BF00649097

Download citation

Key words

  • Apparent molar volumes
  • electrolytes
  • lithium batteries
  • propylene carbonate
  • acetonitrile
  • dimethoxyethane
  • tetrahydrofuran
  • mixed solvents