Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Partial molal heat capacity of aqueous ferrous chloride from measurements of integral heats of dilution

Abstract

Heats of dilution of concentrated aqueous solutions (4.43 moles-kg−1) of FeCl2 were measured at 15, 25, and 35°C. The heat capacities of these concentrated solutions were also measured at the same temperatures. From these data the partial molal heat capacity, C p2 0 (FeCl2, aq, 298.15°K)=−2.56±30 J−°K−1−mole−1, was calculated. The partial molal heat capacity of Fe2+(aq), −2±30 J-°K−1-mole−1, was correlated with the “correspondence principle” equations of Criss and Cobble.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    J. W. Cobble,Science 152, 1479 (1966).

  2. 2.

    V. B. Parker, Thermal properties of aqueous uni-univalent electrolytes,Nat. Stand. Ref. Data Ser., Natl. Bur. Stand. 2, U.S. Dept. of Commerce, Washington, D.C. (1965), Fig. 1 asm→0.

  3. 3.

    C. M. Criss and J. W. Cobble,J. Am. Chem. Soc. 83, 3223 (1961).

  4. 4.

    P. Picker, P.-A. Leduc, P. R. Philip, and J. E. Desnoyers,J. Chem. Thermodyn. 3, 631 (1971).

  5. 5.

    P. P. Singh, E. M. Woolley, K. G. McCurdy, and L. G. Hepler,Can. J. Chem. 54, 3315 (1976).

  6. 6.

    A. Roux, G. M. Musbally, G. Perron, J. E. Desnoyers, P. P. Singh, E. M. Woolley, and L. G. Hepler,Can. J. Chem. 56, 24 (1978).

  7. 7.

    J. J. Spitzer, P. P. Singh, K. G. McCurdy, and L. G. Hepler,J. Solution Chem. 7, 81 (1978).

  8. 8.

    L. R. Morss and M. C. McCue,J. Chem. Eng. Data 21, 337 (1976).

  9. 9.

    D. M. Nocera, L. R. Morss, and J. A. Fahey,J. Inorg. Nucl. Chem. 41, in press.

  10. 10.

    P. R. Tremaine, Paper IAEA-SM-236/11, International Symposium on Thermodynamics of Nuclear Materials, International Atomic Energy Agency, Vienna (1979).

  11. 11.

    J. C. M. Li and N. W. Gregory,J. Am. Chem. Soc. 74, 4670 (1952).

  12. 12.

    P. J. Cerutti and L. G. Hepler,Thermochim. Acta 20, 309 (1977).

  13. 13.

    E. A. Guggenheim and J. E. Prue,Trans. Faraday Soc. 50, 710 (1954).

  14. 14.

    L. F. Silvester and K. S. Pitzer,J. Phys. Chem. 81, 1822 (1977).

  15. 15.

    K. S. Pitzer, J. R. Peterson, and L. F. Silvester,J. Solution Chem. 7, 45 (1978).

  16. 16.

    K. H. Gayer and L. Woontner,Inorg. Synth. 5, 179 (1957).

  17. 17.

    L. R. Morss,J. Chem. Thermodyn. 7, 709 (1975).

  18. 18.

    N. S. Osborne, H. F. Stimson, and D. C. Ginnings,J. Res. Natl. Bur. Stand. 23, 197 (1939).

  19. 19.

    L. R. Morss,J. Phys. Chem. 75, 392 (1971).

  20. 20.

    J. E. Desnoyers, C. de Visser, G. Perron, and P. Picker,J. Solution Chem. 5, 605 (1976).

  21. 21.

    V. B. Parker, Thermal properties of aqueous uni-univalent electrolytes,Nat. Stand. Ref. Data Ser., Natl. Bur. Stand. 2, U.S. Dept. of Commerce, Washington, D.C. (1965).

  22. 22.

    C. M. Criss and J. W. Cobble,J. Am. Chem. Soc. 86, 5390 (1964).

  23. 23.

    G. K. Johnson and J. E. Bauman, Jr.,Inorg. Chem. 17, 2774 (1978).

  24. 24.

    D. D. Wagman, W. H. Evans, V. B. Parker, I. Halow, S. M. Bailey, and R. H. Schumm, Selected values of chemical thermodynamic properties,Natl. Bur. Stand. Tech. Note 270-4, U.S. Dept. of Commerce, Washington, D.C. (1969).

  25. 25.

    W. A. Patrick and W. E. Thompson,J. Am. Chem. Soc. 75, 1184 (1953).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bernarducci, E.E., Morss, L.R. & Miksztal, A.R. Partial molal heat capacity of aqueous ferrous chloride from measurements of integral heats of dilution. J Solution Chem 8, 717–727 (1979). https://doi.org/10.1007/BF00648777

Download citation

Key Words

  • Heat capacity
  • heat of dilution
  • electrolyte solutions
  • iron(II) chloride solution