Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Mass spectrometric diagnosis of the surface nitriding mechanism in a d.c. glow discharge

  • 68 Accesses

  • 11 Citations


Reactive constituents have been investigated in a molecular beam generated in the cathode surface glow area and surface boundary layer. Mixtures of nitrogen and hydrogen form NHx(x=0–4) compounds, which are of relevance in heterogeneous, plasma vs. metal nitriding reactions. Ammonia decomposition leads to NHx(x=2–4). Strong cataphoretic enrichment of hydrogen has been observed in the cathode glow area. Heterogeneous reactions of NHx with iron lead to the formation of iron nitrides via intermediates such as FeNH2–3. In a pulsed d.c. glow discharge, increased sputtering and decreased hydrogen enrichment have been observed.

This is a preview of subscription content, log in to check access.


  1. 1.

    A. Fry,Stahl Eisen 43, 1271 (1923).

  2. 2.

    J. Kölbel, Die Nitridschichtbildung bei der Glimmentladung, Forschungsbericht des Landes NRW Nr. 1555, Westdeutscher Verlag, Köln/Opladen (1965).

  3. 3.

    M. Hudis, Study of ion-nitriding,J. Appl. Phys. 44, 1489 (1973).

  4. 4.

    G. G. Tibbets, Role of nitrogen in ion-nitriding,J. Appl. Phys. 45, 5072 (1974).

  5. 5.

    B. Edenhofer, Physikalische und metallkundliche Vorgänge beim Nitrieren im Plasma einer Glimmentladung,Härterei Tech. Mitt. 29, 105 (1974).

  6. 6.

    B. Edenhofer and T. J. Bewley, Low-temperature ion-nitriding: nitriding at temperatures below 500°C for tools and precision machine parts,Heat Treatment 1976, 7.

  7. 7.

    K. Keller, Schichtaufbau glimmnitrierter Eisenwerkstoffe,Härterei Tech. Mitt. 26, 120 (1971).

  8. 8.

    C. K. Jones, S. W. Martin, D. J. Sturges, and M. Hudis, Ion-nitriding,Heat Treat. 71, 71 (1973).

  9. 9.

    M. Konuma and O. Matsumoto, Nitriding of titanium in a r.f. discharge,J. Less-Common Met. 52, 145 (1977).

  10. 10.

    M. Konuma and O. Matsumoto, Nitriding of zirconium in a r.f. discharge,J. Less-Common Met. 52, 97 (1977).

  11. 11.

    H. S. W. Massey and E. H. S. Burhop,Electronic and Ionic Impact Phenomena, Oxford University Press, Oxford (1952).

  12. 12.

    W. D. Davis and T. A. Vanderslice, Ion energies at the cathode of a glow discharge,Phys. Rev. 131, 219 (1963).

  13. 13.

    M. Hudis, Plasma treatment of solid materials, inTechniques and Applications of Plasma Chemistry, J. R. Hollahan and A. T. Bell, eds., Wiley, New York (1974).

  14. 14.

    H. Knüppel, K. Brotzmann, and F. Eberhard, Nitrieren von Stahl in der Glimmentladung,Stahl Eisen 78, 1871 (1958).

  15. 15.

    W. D. Soccorsy and W. T. Ebihara, Identification kinetics of two commercial steels, Technical report RE 70-156, U.S. Army Weapons Command, Science and Technology Laboratory, Rock Island, Illinois (1970).

  16. 16.

    B. J. Lightfoot and D. H. Jack, Kinetics of nitriding with and without white-layer formationHeat Treat. 73, 59 (1975).

  17. 17.

    H. J. Grabke, Reaktionen von Ammoniak, Stickstoff und Wasserstoff an der Oberfläche von Eisen I. u. II.,Ber. Bunsenges. 72, 533–548 (1968).

  18. 18.

    J. Zysk, J. Tacikowski, and E. Kasprzycka, Die Nitrierbarkeit ausgewählter legierter Stähle,Härterei Tech. Mitt. 34, 263 (1979).

  19. 19.

    F. Hombeck, Das Ionitrierverfahren, Berg-Hüttenmänn. Monatsch. 116, 484 (1971).

  20. 20.

    B. Edenhofer and H. Tenkler, Einfluß der Nitrierdaten und der Stahlzusammensetzung auf die Härte von Nitrierschichten,Härterei Tech. Mitt. 35, 220 (1980).

  21. 21.

    V. A. Philips and A. U. Seybolt, A transmission electron microscope study of some ion-nitrided binary iron alloys and steels,Trans. Metall. Soc. AIME242, 2415 (1968).

  22. 22.

    A. U. Seybolt, Some observations on the metallurgy of ion-nitriding,Trans. Metall. Soc. AIME245, 769 (1969).

  23. 23.

    Kirk-OthmerEncyclopedia of Chemical Technology, 3rd edn., Vol. 15,Nitrides-Nitriding, Wiley, New York (1981), p. 871.

  24. 24.

    W. D. Jentzsch and S. Böhmer, Zur Kinetik der Vorgänge bei der Gasnitrierung,Neue Hütte 24, 249 (1979).

  25. 25.

    C. Braganza, S. Vepřek, and E. Wirz, Nitriding of metals and interaction of the nitrides with a low-pressure hydrogen plasma, Conference Proceedings of the 4th International Symposium on Plasma Chemistry, Zürich (1979).

  26. 26.

    H. Wilhelmi, S. Strämke, and H. C. Pohl, Nitrieren mit gepulster Glimmentladung,Härterei Tech. Mitt. 37, 263 (1982).

  27. 27.

    W. Oppel and B. Edenhofer, Härtung von Metalloberflächen durch Ionenbeschuβ in der Glimmentladung,Metalloberfläche 30, 64 (1976).

  28. 28.

    B. Schweer, Neue Entwicklungen zur automatischen Prozeβführung bei Anlagen für das Plasmanitrieren,Härterei Tech. Mitt. 33, 90 (1978).

  29. 29.

    A. Marciniak and T. Karpinksi, Comparative studies on energy consumption in installations for ion and gas nitriding,Ind. Heat., April, 42 (1980).

  30. 30.

    J. L. Franklin, J. G. Dillard, H. M. Rosenstock, J. T. Herron, K. Draxl, and F. H. Field, Ionization potentials, appearance potentials, and heats of formation of gaseous positive ions,Natl. Stand. Ref. Data Ser. NBS 26, Washington D.C. (1969).

  31. 31.

    O. Matsumoto, private communications.

  32. 32.

    A. Gicquel, M. P. Bergougnan, J. Amouroux, and D. Rapakoulis, Heterogeneous catalytic reactions in nonequilibrium plasmas: Analysis of the plasma-solid boundary layer, Conference Proceedings of the 6th International Symposium on Plasma Chemistry, Montreal (1983).

  33. 33.

    R. E. Winters and J. H. Collins, Metastable transitions in the mass spectrum of iron pentacarbonyl,J. Phys. Chem. 70, 2057 (1966).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Szabo, A., Wilhelmi, H. Mass spectrometric diagnosis of the surface nitriding mechanism in a d.c. glow discharge. Plasma Chem Plasma Process 4, 89–105 (1984). https://doi.org/10.1007/BF00647190

Download citation

Key words

  • d.c. glow discharge
  • steel surface nitriding
  • molecular beam plasma diagnostics