Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Gravitational instability of a heat-conducting plasma

  • 42 Accesses

  • 8 Citations

Abstract

The gravitational instability of an infinite, anisotropic, heat-conducting plasma is studied in this paper. It is found that, for the case of parallel propagation, the inclusion of heat-conduction terms in the fluid equations, in general, leads to overstability of the system, whereas the transverse propagation remains unaffected. We have solved numerically the dispersion relation corresponding to the parallel propagation and find that except for a range of wave numbers, the system is overstable. We also found that in the limit of vanishing zeroth-order heat flux, the condition for gravitational instability is similar to the Jeans's condition for instability for an isotropic plasma.

This is a preview of subscription content, log in to check access.

References

  1. Bhatia, P. K.: 1967,Phys. Fluids 10, 1652.

  2. Gliddon, J. E. C.: 1966,Astrophys. J. 145, 583.

  3. Huang, L., Lee, L. C., and Whang, Y. C.: 1988,Planetary Space. Sci. 36(8), 775.

  4. Kalra, G. L. and Hosking, R. J.: 1970,Astrophys. Space Sci. 9, 34.

  5. Kalra, G. L. and Talwar, S. P.: 1966,Publ. Astron. Soc. Japan 18, 466.

  6. Kalra, G. L. and Talwar, S. P.: 1970,Can. J. Phys. 48, 29.

  7. Kalra, G. L., Singh, Bhupinder, and Kathuria, S. N.: 1985,J. Plasma Phys. 34, 313.

  8. Marochnik, L. S.: 1967,Soviet Astron.-AJ. 10, 738.

  9. Tandon, J. N. and Talwar, S. P.: 1963,Nucl. Fusion 3, 75.

  10. Whang, Y. C.: 1971,J. Geophys. Res. 76, 7503.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bora, M.P., Nayyar, N.K. Gravitational instability of a heat-conducting plasma. Astrophys Space Sci 179, 313–320 (1991). https://doi.org/10.1007/BF00646951

Download citation

Keywords

  • Heat Flux
  • Dispersion Relation
  • Parallel Propagation
  • Fluid Equation
  • Gravitational Instability