Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Ultrasonic relaxation studies of solutions of triethylamine and 3,3-diethylpentane in 2-propanol as a function of temperature

  • 31 Accesses

  • 1 Citations

Abstract

Ultrasonic absorption data obtained over the frequency range 5–95 MHz by the pulse method are reported for 3,3-diethylpentane and triethylamine in 2-propanol in the temperature range 0–25°C. Data are also reported for triethylamine as a function of concentration. A relaxation is observed under all experimental conditions and is associated with the equilibrium between rotational isomers as previously proposed by other workers. The energy parameters associated with a two-state model for the isomers are evaluated and compared with previous results for the pure liquids. The difference in these parameters for the compounds dissolved in 2-propanol is partly attributed to the difference in the dynamics of rotation of an ethyl group about a carbon-carbon and carbon-nitrogen bond.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    S. Petrucci and G. Atkinson,J. Phys. Chem. 70, 2550 (1960); G. S. Darbari and S. Petrucci,J. Phys. Chem. 74, 268 (1970); S. Petrucci and M. Battistini,J. Phys. Chem. 71, 1181 (1967); S. Petrucci and F. Fittipaldi,J. Phys. Chem. 71, 3087 (1967).

  2. 2.

    T. Noveske, J. Stuehr, and D. F. Evans,J. Solution Chem. 1, 93 (1972).

  3. 3.

    M. J. Blandamer, M. J. Foster, N. J. Hidden, and M. C. R. Symons,Chem. Commun., 62 (1966).

  4. 4.

    M. J. Blandamer, M. J. Foster, N. J. Hidden, and M. C. R. Symons,J. Phys. Chem. 72, 2268 (1968).

  5. 5.

    J. Stuehr, T. Noveske, and D. F. Evans,J. Phys. Chem. 77, 912 (1973).

  6. 6.

    E. L. Heasell and J. Lamb,Proc. Roy. Soc. London, Ser. A 237, 233 (1956).

  7. 7.

    R. E. Verrall and H. Nomura,J. Solution Chem. 6, 1 (1977).

  8. 8.

    M. J. Blandamer,Introduction to Chemical Ultrasonics (Academic Press, London, 1973).

  9. 9.

    K. S. Jyenger,Proc. Indian Acad. Sci., Sect. A 33, 127 (1951).

  10. 10.

    A. Weissberger and E. S. Proskauer,Technique of Organic Chemistry. Vol. VII. 2nd ed.,Organic Solvents—Physical Properties and Methods of Purification (Interscience, 1955), p. 93.

  11. 11.

    E. B. Freyer, J. C. Hubbard, and D. H. Andrews,J. Am. Chem. Soc. 51, 759 (1929).

  12. 12.

    K. R. Crook, P. J. D. Park, and E. Wynn-Jones,J. Chem. Soc. A, 2910 (1969).

  13. 13.

    J. E. Piercy,J. Acoust. Soc. Am. 33, 198 (1961); S. V. Subrahmanyam and J. E. Piercy,J. Acoust. Soc. Am. 37, 340 (1965); J. E. Piercy and S. V. Subrahmanyam,J. Chem. Phys. 42, 1475 (1965); S. V. Subrahmanyam and J. E. Piercy,J. Chem. Phys. 42, 1845 (1965).

  14. 14.

    J. M. Young and A. A. Petrauskas,J. Chem. Phys. 25, 943 (1956); J. H. Chen and A. A. Petrauskas,J. Chem. Phys. 30, 304 (1959).

Download references

Author information

Correspondence to R. E. Verrall.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Verrall, R.E., Nomura, H. Ultrasonic relaxation studies of solutions of triethylamine and 3,3-diethylpentane in 2-propanol as a function of temperature. J Solution Chem 6, 217–229 (1977). https://doi.org/10.1007/BF00646740

Download citation

Key words

  • Sound absorption
  • relaxation
  • triethylamine
  • 3,3-diethyl-pentane
  • 2-propanol
  • equilibrium between rotational isomers
  • energy parameters