Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Mass action model for solute distribution between water and micelles. Partial molar volumes of butanol and pentanol in dodecyl surfactant solutions

  • 122 Accesses

  • 83 Citations

Abstract

The densities of 1-butanol and 1-pentanol were measured in aqueous solutions of dodecyltrimethylammonium bromide and dodecyldimethylamine oxide and the partial molar volumes at infinite dilution of the alcohols in aqueous surfactants solutions were obtained. The observed trends of this quantity as a function of the surfactant concentration were rationalized using a mass-action model for the alcohol distribution between the aqueous and the micellar phase. At the same time, the model was revised to account for the alcohol effect on the surfactant micellization equilibrium. The partial molar volume of alcohols in the aqueous and in the micellar phases and the ratios between the binding constant and the aggregation number were calculated. These thermodynamic quantities are nearly the same in the two surfactants analyzed in this paper but differ appreciably from those in sodium dodecylsulfate. The apparent molar volume of surfactants in some hydroalcoholic solutions at fixed alcohol concentration were also calculated. In the micellization region the trend of this quantity as a function of the surfactant concentration shows a hump, which depends on the alcohol concentration and on the alcohol alkyl chain length. The alcohol extraction from the aqueous to the micellar phase due to the addition of the surfactant can account for the observed trends.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    G. Perron, R. De Lisi, I. Davidson, S. Genereux, and J. E. Desnoyers,J. Colloid and Inter. Sci. 79, 432 (1981).

  2. 2.

    J. Lara, G. Perron, and J. E. Desnoyers,J. Phys. Chem. 85, 1600 (1981).

  3. 3.

    R. De Lisi, C. Genova, R. Testa, and V. Turco Liveri,J. Solution Chem. 13, 121 (1984).

  4. 4.

    R. De Lisi, C. Genova, and V. Turco Liveri,J. Colloid Inter. Sci. 95, 428 (1983).

  5. 5.

    E. E. Tucker, and S. D. Christian,Faraday Symp. Chem. Soc. 17, 11 (1982).

  6. 6.

    C. Treiner,J. Colloid Inter. Sci. 90, 444 (1982).

  7. 7.

    A. H. Roux, D. Hetu, G. Perron, and J. E. Desnoyers,J. Solution Chem. 13, 1 (1984).

  8. 8.

    J. H. Hogan, R. A. Engel, and H. F. Stevenson,Anal. Chem. 42, 249 (1970).

  9. 9.

    R. De Lisi, C. Ostiguy, G. Perron, and J. E. Desnoyers,J. Colloid Inter. Sci. 71, 147 (1979).

  10. 10.

    L. Benjamin,J. Phys. Chem. 70, 3790 (1966).

  11. 11.

    J. E. Desnoyers, D. Roberts, R. De Lisi, and g. Perron, inSolution Behavior of Surfactants, Volume 1, K. L. Mittal and E. J. Fendler, eds., (Plenum, New York, 1982), p. 343.

  12. 12.

    J. E. Desnoyers, G. Caron, R. De Lisi, D. Roberts, A. H. Roux, and G. Perron,J. Phys. Chem. 87, 1397 (1983).

  13. 13.

    P. Picker, E. Tremblay, and C. Jolicoeur,J. Solution Chem. 3, 377 (1974).

  14. 14.

    C. Treiner,J. Colloid Inter. Sci. 93, 33 (1983).

  15. 15.

    W. McMillan and J. Mayer,J. Phys. Chem. 13, 176 (1945).

  16. 16.

    G. Roux-Desgranges, A. H. Roux, J. P. Grolier, and A. Viallard,J. Solution Chem. 11, 357 (1982).

  17. 17.

    J. E. Desnoyers, R. De Lisi, and G. Perron,Pure and Appl. Chem. 52, 433 (1980).

  18. 18.

    G. M. Musbally, G. Perron, and J. E. Desnoyers,J. Colloid Inter. Sci. 48, 494 (1974).

  19. 19.

    E. D. Goddard and G. C. Benson,Can. J. Chem. 35, 986 (1957).

  20. 20.

    J. E. Desnoyers, D. Hetu, and G. Perron,J. Solution Chem. 12, 427 (1983).

  21. 21.

    E. Vikingstad and V. Kvammen,J. Colloid Inter. Sci. 74, 16 (1980).

  22. 22.

    J. M. Corkill, J. F. Goodman, and T. Walker,Trans. Faraday Soc. 63, 7681 (1967).

  23. 23.

    R. De Lisi and V. Turco Liveri,Gazzetta Chim. Ital. 113, 371 (1983).

  24. 24.

    K. Hayase and S. Hayano,Bull. Chem. Soc. Jpn. 50, 83 (1977).

  25. 25.

    H. Høiland, private communication.

  26. 26.

    J. E. Desnoyers, M. Billon, S. Leger, G. Perron, and J. P. Morel,J. Solution Chem. 5, 681 (1976).

  27. 27.

    E. B. Abuin and E. A. Lissi,J. Colloid Inter. Sci. 95, 198 (1983).

  28. 28.

    R. Zana, S. Yiv, C. Strazielle, and P. Lianos,J. Colloid Inter. Sci. 80, 208 (1981).

  29. 29.

    C. Treiner, A. Le Besnerais, and C. Micheletti,Adv. Chem. Ser. No. 107, 105 (1979).

  30. 30.

    R. Aveyard and R. Heselden,J. Chem. Soc. Faraday Trans. I 70, 1953 (1974).

  31. 31.

    E. Vikingstad and H. Høiland,J. Colloid Inter. Sci. 64, 510 (1978).

  32. 32.

    C. Joliceour and G. Lacroix,Can. J. Chem. 54, 624 (1976).

  33. 33.

    G. Perron and J. E. Desnoyers,J. Chem. Therm. 13, 1105 (1981).

  34. 34.

    P. Mukerjee, K. J. Mysels, and P. Kapauan,J. Phys. Chem. 71, 4166 (1967).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

De Lisi, R., Liveri, V.T., Castagnolo, M. et al. Mass action model for solute distribution between water and micelles. Partial molar volumes of butanol and pentanol in dodecyl surfactant solutions. J Solution Chem 15, 23–54 (1986). https://doi.org/10.1007/BF00646309

Download citation

Key words

  • butanol
  • pentanol
  • dodecyltrimethylammonium bromide
  • dodecyldimethylamine oxide
  • micelles
  • mixed micelles
  • apparent molar volume
  • alcohol-micelle binding constant
  • critical micelle concentration
  • unmicellized surfactant concentration