Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Enthalpies and heat capacities of dissolution of some sodium carboxylates in water and hydrophobic hydration

  • 100 Accesses

  • 13 Citations

Abstract

Integral heats of solution ΔHs of sodium carboxylates, CnH2n+1COONa (n=0, 1, 2, 3, 4, 5, and 7) and C6H5(CH2)nCOONa (n=0, 1, 2, and 3), in water at 25 and 35°C have been determined at very low concentrations. The heat capacities of dissolution at infinite dilution, ‡C p o , of sodium carboxylates have been derived by the integral heat method. The-CH2-increment of ‡C p o in aliphatic carboxylates has been found to be 14 cal-deg−1-mole−1, which is close to the value derived from other series of compounds, indicating that the interaction of nonpolar moieties with water is independent of the hydrophilic group attached to it. On the other hand, the-CH2-increment for the aromatic sodium carboxylates is much less (about 6 cal-deg−1-mole−1) than for the aliphatic sodium carboxylates, indicating that the hydrophobic interaction is affected by the aromatic end group.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    T. S. Sarma and J. C. Ahluwalia,Chem. Soc. Rev. 2, 203 (1973).

  2. 2.

    S. Subramanian and J. C. Ahluwalia,J. Phys. Chem. 72, 2525 (1968).

  3. 3.

    R. K. Mohanty and J. C. Ahluwalia,J. Chem. Thermodyn. 4, 53 (1972).

  4. 4.

    S. Sunder, B. Chawla, and J. C. Ahluwalia,J. Phys. Chem. 78, 738 (1974).

  5. 5.

    F. J. Millero,Chem. Rev. 71, 147 (1971).

  6. 6.

    G. Kalfogulu and L. H. Bowen,J. Phys. Chem. 73, 2728 (1969).

  7. 7.

    S. Lindenbaum,J. Chem. Thermodyn. 3, 625 (1971).

  8. 8.

    T. S. Sarma, R. K. Mohanty, and J. C. Ahluwalia,Trans. Faraday Soc. 65, 2333 (1969).

  9. 9.

    S. R. Gunn,J. Phys. Chem. 69, 2902 (1965).

  10. 10.

    J. W. Larson and L. G. Hepler,Solute-Solvent Interactions, J. F. Coetzee and C. D. Ritchie, eds. (Marcel Dekker, New York, 1969), Chap. 1.

  11. 11.

    H. Snell and J. Greyson,J. Phys. Chem. 74, 2148 (1970).

  12. 12.

    L. P. Fernandez and L. G. Hepler,J. Phys. Chem. 63, 110 (1959).

  13. 13.

    C. M. Criss and J. W. Cobble,J. Am. Chem. Soc. 83, 3223 (1961).

  14. 14.

    J. Konicek and I. Wadsö,Acta Chem. Scand. 25, 1541 (1971).

  15. 15.

    J. M. Corkill, J. F. Goodman, and J. R. Tate,Trans. Faraday Soc. 65, 1472 (1969).

  16. 16.

    J. D. Worley and I. M. Klotz,J. Chem. Phys. 45, 2868 (1966).

  17. 17.

    D. M. Alexander and D. I. T. Hill,Australian J. Chem. 22, 347 (1969).

  18. 18.

    E. M. Arnett, B. Kover, and J. V. Carter,J. Am. Chem. Soc. 91, 4028 (1969).

  19. 19.

    E. M. Arnett and J. V. Carter, personal communication to Konicek and Wadsö (see ref. 14).

  20. 20.

    K. Tamaki, Y. Isomura, and Y. O'Hara,Bull. Chem. Soc. Japan 45, 2939 (1972).

  21. 21.

    H. Rüterjans, F. Schreiner, U. Sage, and T. Ackermann,J. Phys. Chem. 73, 986 (1969).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chawla, B., Ahluwalia, J.C. Enthalpies and heat capacities of dissolution of some sodium carboxylates in water and hydrophobic hydration. J Solution Chem 4, 383–389 (1975). https://doi.org/10.1007/BF00645571

Download citation

Key Words

  • Molal heat capacity
  • heat of solution
  • sodium carboxylates
  • hydrophobic hydration