Astrophysics and Space Science

, Volume 189, Issue 1, pp 5–9 | Cite as

Two Kaluza-Klein wormhole solutions

  • Jin Wang


In this paper we examine models of ten-dimensional supergravity and monoples. Wormhole solutions are obtained under the Freund-Rubin-type spontaneous compactification. The meaning of the solutions is discussed in terms of the tunnelling process.


Tunnelling Process Wormhole Solution Spontaneous Compactification 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Appelquist, T., Chodos, A., and Freund, P.: 1987,Modern Kaluza-Klein Theories, Addison Weslev Publ Co., New York.Google Scholar
  2. Coleman, S.: 1988,Nucl. Phys. B307, 867.Google Scholar
  3. Freund, P. O. G. and Rubin, M. A.: 1980,Phys. Letters 79B, 233.Google Scholar
  4. Fukutaka, H., Ghoroku, K., and Tanaka, K.: 1989,Phys. Letters B222, 191.Google Scholar
  5. Giddings, S. and Strominger, A.: 1988,Nucl. Phys. B306, 890.Google Scholar
  6. Green, M., Schwarz, J., and Witten, E.: 1987,Superstring Theory, Vols. I and II, Cambridge University Press, Cambridge.Google Scholar
  7. Hawking, S. W.: 1987,Phys. Letters 195B, 337.Google Scholar
  8. Hawking, S. W.: 1988,Phys. Rev. D37, 904.Google Scholar
  9. Hosoya, A. and Ogura, W.: 1989,Phys. Letters B225, 117.Google Scholar
  10. Kolb, E. and Turner, M.: 1990,The Early Universe, Addison Wesley Publ. Co., New York.Google Scholar
  11. Lee, K. and Smirnakis, S. M.: 1989, Harvard University preprint HUPT-89/A024.Google Scholar
  12. Mayers, R.: 1988,Phys. Rev. D38, 1327.Google Scholar

Copyright information

© Kluwer Academic Publishers 1992

Authors and Affiliations

  • Jin Wang
    • 1
  1. 1.Department of AstrophysicsUniversity of IllinoisUrbanaUSA

Personalised recommendations