Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

The critical and the saturation content of magnetic monopoles in rotating relativistic objects


Both the critical content ζ c (ζ ≡N m /N B , whereN m ,N B are the total numbers of monopoles and nucleons, respectively, contained in the object), and the saturation content ζ s of monopoles in a rotating relativistic object are found in this paper. The results are:

$$\zeta _c = \zeta _{c0} \left( {1 - \frac{{4a^2 }}{{R_g^2 }}} \right)^{1/2} ,{\text{ }}\zeta _{c0} \equiv {{Gm_B } \mathord{\left/ {\vphantom {{Gm_B } {g_m }}} \right. \kern-\nulldelimiterspace} {g_m }} = 4.365 \times 10^{ - 21} $$

wherea is the specific angular momentum of the object;R g the Schwarzschild radius of the object;g m , the magnetic charge of a stable colourless monopoleg m =3hc/4πe.

  1. (2)

    For a non-rotating object (a=0).

    $$\zeta _s = \zeta _n \left( {1 - {{R_g } \mathord{\left/ {\vphantom {{R_g } R}} \right. \kern-\nulldelimiterspace} R}} \right)^{ - {\text{ }}1/2} $$


    $$\left( {{R \mathord{\left/ {\vphantom {R R}} \right. \kern-\nulldelimiterspace} R}_g } \right)^2 \gg {\text{ 1 or }}\zeta _s = \sqrt 2 {\text{ }}\beta ^{ - {\text{ }}1/2} \sqrt {\frac{R}{{R_g }}} \zeta _n {\text{ when }}{R \mathord{\left/ {\vphantom {R R}} \right. \kern-\nulldelimiterspace} R}_g< 1 + \beta $$

    whereR is the radius of the object; ζ n , the Newtonian saturation content2 of like monopole,

    $$\begin{gathered} \zeta _n = {{Gm_B m_m } \mathord{\left/ {\vphantom {{Gm_B m_m } {g_m^2 = 1.9 \times 10^{ - 25} \left( {{{m_m } \mathord{\left/ {\vphantom {{m_m } {10^{16} m_B }}} \right. \kern-\nulldelimiterspace} {10^{16} m_B }}} \right),}}} \right. \kern-\nulldelimiterspace} {g_m^2 = 1.9 \times 10^{ - 25} \left( {{{m_m } \mathord{\left/ {\vphantom {{m_m } {10^{16} m_B }}} \right. \kern-\nulldelimiterspace} {10^{16} m_B }}} \right),}} \hfill \\ \beta {\text{ = }}{{\zeta _n } \mathord{\left/ {\vphantom {{\zeta _n } {\zeta _{c0} }}} \right. \kern-\nulldelimiterspace} {\zeta _{c0} }} = 4.3 \times 10^{ - 5} \left( {{{m_m } \mathord{\left/ {\vphantom {{m_m } {10^{16} m_B }}} \right. \kern-\nulldelimiterspace} {10^{16} m_B }}} \right) \hfill \\ \end{gathered} $$

    . Although the critical content cannot be reached, the induced nucleon decay by monopoles will prevent the massive objects (e.g., galactic nuclei and quasars) from collapsing into black holes (Penget al., 1986a, b).

  2. (3)

    For a rotating object, although the saturation content of monopoles is the same as above, the value of the critical content is greatly decreased for a fast rotating object. Due to the induced nucleon decay by monopoles, neither the horizon nor the central singularity exists for a collapsed object withR≤1/2R g which is rotating so fast that the conditiona>GM/c 2 [1 − (ζ/ζ cO )2]1/2 is satisfied. Those objects mainly radiate infrared radiation with rather strong γ-ray and X-ray.

This is a preview of subscription content, log in to check access.


  1. Callan, C.:Phys. Rev. D25, 2141.

  2. Guth, A. H.: 1982,10 −35 Seconds After the Big Bang, talk presented at the Second Moriond Astrophysics Meeting, XVIIth, Rencontre de Moriond, Les Arcs-Savoie, France, March 14–20, 1982.

  3. Kasuya, M.: 1982,Phys. Rev. D25, 995.

  4. Lazarides, G. et al.: 1981,Phys. Letters 100B, 21.

  5. Ma, Z. and Tang, J.: 1983,Phys. Letters 126B, 319.

  6. Parker, E. N.: 1970,Astrophys. J. 160, 333.

  7. Peng, Q.: 1988, ‘Re-estimation of the Content of Magnetic Monopoles in Celestial Bodies (Galactic Nuclei, Quasars, Stars and Planets)’, preprint.

  8. Peng, Q., Li, Z., and Wang, D.: 1985,Scientia Sinica 28, 970.

  9. Peng, Q., Wang, D., and Li, Z.: 1986a,Acta Astrophys. Sinica 6, 249.

  10. Peng, Q., Wang, D., and Li, Z.: 1986a,Acta Astrophys. Sinica 6, 249.

  11. Peng, Q., Wang, D., and Li, Z.: 1986b, in G. Giuricin, F. Mardirossian, M. Mezetti, and M. Ramella (eds.),

  12. Rubakov, V.: 1981,J. Eksper. Theor. Phys. Letters 33, 644.

  13. Rubakov, V.: 1982,Nucl. Phys. B203, 311.

  14. Rubakov, V.: 1983,Nucl. Phys. B218, 240.

  15. Wang, D. and Peng, Q.: 1986,Adv. Space Res. 6, 177.

  16. Wang, D., Peng, Q., and Cheng, T.: 1986,Astrophys. Space Sci. 118, 379.

  17. Wang, D., Peng, Q., and Li, Z.: 1985,Kexue Tongbao 30, 210.

  18. Wilczek, F.: 1982,Phys. Rev. Letters 48, 1146.

Download references

Author information

Additional information

The project is supported by the National Natural Science Foundation of China.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Peng, Q. The critical and the saturation content of magnetic monopoles in rotating relativistic objects. Astrophys Space Sci 154, 271–279 (1989).

Download citation


  • Radiation
  • Black Hole
  • Angular Momentum
  • Infrared Radiation
  • Magnetic Charge