Journal of Materials Science

, Volume 26, Issue 17, pp 4683–4686 | Cite as

Silicon nitride films deposited from SiF4/NH3 gas mixtures

  • C. Gomez-Aleixandre
  • O. Sanch Ez-Garrido
  • J. M. Martinez-Duart
  • J. M. Albella


Silicon nitride films have been deposited from SiF4/NH3/H2 gas mixtures. The deposition reaction at high pressure (52 torr), takes place only for temperatures above 800°C. In the temperature range 800–1000°C the reaction is controlled by a surface process. The increase in H2 and SiF4 partial pressures enhances the deposition rate. The SiF4 molecules provide a high concentration of available silicon atoms, while the hydrogen molecules inhibit the etching effect of the free fluorine atoms. Finally, the effect of an r.f. plasma in the chemical vapour deposition reaction has been evaluated.


Deposition Rate Silicon Nitride Fluorine Atom SiF4 Kcal Tool 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. E. Livengood and D. W. Hess, Thin Solid Films 162 (1988) 59.CrossRefGoogle Scholar
  2. 2.
    V. S. Dharmadhikari, ibid. 153 (1989) 459.CrossRefGoogle Scholar
  3. 3.
    O. Sanchez, C. Gomez-Aleixandre, M. Fernandez and J. M. Albella, Vacuum 39 (1989) 727.CrossRefGoogle Scholar
  4. 4.
    C. P. Chang, D. L. Flamm, D. E. Ibbotson and J. Mucha, J. Appl. Phys. 62 (1987) 1406.CrossRefGoogle Scholar
  5. 5.
    S. Fujita, H. Toyoshima, T. Ohishi and A. Sasaki, Jpn J. Appl. Phys. 23 (1984) L144.CrossRefGoogle Scholar
  6. 6.
    S. Fujita, T. Osishi, H. Toyoshima and A. Sasaki, J. Appl. Phys. 57 (1985) 426.CrossRefGoogle Scholar
  7. 7.
    T. L. Chu, C. H. Lee and G. E. Gruber, J. Electrochem. Soc. 144 (1967) 717.CrossRefGoogle Scholar
  8. 8.
    F. Galasso, U. Kuntz and W. J. Croft, J. Amer. Ceram. Soc. 55 (1972) 431.CrossRefGoogle Scholar
  9. 9.
    Mitsui Toatsu Chemicals, Inc., Japanese Pat. 59 174 506 (1984).Google Scholar
  10. 10.
    Hitachi Ltd, Japanese Pat. 60 107 841 (1985).Google Scholar
  11. 11.
    J. L. Vossen and W. Kern, in “Thin Film Processes”, (Academic Press, New York, 1978) p. 258.Google Scholar
  12. 12.
    S. M. Sze, “VLSI Technology” (McGraw-Hill, New York, 1983).Google Scholar
  13. 13.
    D. E. Sestrich, Us Pat. 3 637 423.Google Scholar
  14. 14.
    H. Remy, in “Treatise on Inorganic Chemistry”, Vol. I (Elsevier, Amsterdam, 1967).Google Scholar
  15. 15.
    C. Gomez-Aleixandre, O. Sanchez-Garrido and I. M. Albella, in “Proceedings of the 9th International Symposium on Plasma Chemistry”, edited by R. d'Agostino, Vol. II, Bari, Italy (1989) p. 1241.Google Scholar
  16. 16.
    C. J. Fang, L. Ley, H. R. Shanks, K. J. Grunzt and M. Cardona, Phys. Rev. B 22 (1980) 6140.CrossRefGoogle Scholar
  17. 17.
    A. Matsuda, M. Matsumura, K. Nakagama, S. Yamasaki and K. Tanaka, J. Phys. 42 (1981) 687.Google Scholar
  18. 18.
    S. Fujita, H. Toyoshima, T. Ohishi and A. Sasaki, Jpn Appl. Phys. 23 (1984) L268.CrossRefGoogle Scholar
  19. 19.
    K. Yi, J. Kim, K. Jkimand and J. S. Chun, Thin Solid Films 155 (1987) 87.CrossRefGoogle Scholar
  20. 20.
    M. J. Grieco, F. L. Worthing and B. Schwartz, J. Electrochem. Soc. 115 (1968) 525.CrossRefGoogle Scholar
  21. 21.
    H. Dun, P. Pan, F. R. Write and R. W. Douse, ibid. 128 (1981) 1555.CrossRefGoogle Scholar
  22. 22.
    H. V. Boening, in “Fundamentals of Plasma Chemistry and Technology” (Technomic, Lancaster, 1988) Ch. VIII.Google Scholar
  23. 23.
    B. vd. Ven, Solid State Technol. April (1981) 167.Google Scholar
  24. 24.
    D. E. Ibbotson, C. P. Chang, D. L. Flamm and J. A. Mucha, “Proc. SPIE”, 797,118 (1987).CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1991

Authors and Affiliations

  • C. Gomez-Aleixandre
    • 1
  • O. Sanch Ez-Garrido
    • 1
  • J. M. Martinez-Duart
    • 1
  • J. M. Albella
    • 1
  1. 1.Institut Ciencia de MaterialesCSIC, Universidad AutonomaMadridSpain

Personalised recommendations