Journal of Materials Science

, Volume 28, Issue 7, pp 1978–1982 | Cite as

Characterization of the structure of drug dispersions in polyethylene glycols using low-frequency dielectric spectroscopy

  • D. Q. M. Craig
  • R. M. Hill
  • J. M. Newton


Dispersions of a model drug, nortriptyline HCl, in polyethylene glycols 3400, 6000, 10 000 and 20 000 have been studied in both the molten and solid states using low-frequency dielectric spectroscopy. The molten response corresponded to a Maxwell-Wagner system, with a high-frequency conductance in series with a low-frequency barrier-layer capacitance. In comparison to the pure polymers, an increase in conductance was seen on addition of the drug to PEGs 6000 and 10 000, while little change was seen on addition to PEGs 3400 and 20 000. On solidifying the dispersions, the spectra showed a quasi-d.c. response which was associated with the distribution of the amorphous fraction within the sample. These studies indicate that the effect of additive inclusion on the structure of polymeric samples may be usefully examined over the low-frequency dielectric region.


Polymer Spectroscopy Polyethylene Glycol Solid State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. L. Chiou andS. Riegelman,J. Pharm. Sci. 60 (1971) 1281.CrossRefGoogle Scholar
  2. 2.
    D. Q. M. Craig,Drug Dev. Ind. Pharm. 16 (1991) 2501.CrossRefGoogle Scholar
  3. 3.
    D. Q. M. Craig andJ. M. Newton,Int. J. Pharm. 78 (1992) 175.CrossRefGoogle Scholar
  4. 4.
    D. Q. M. Craig, R. M. Hill andJ. M. Newton (1992)J. Mater. Sci. in press. (91 JM 962).Google Scholar
  5. 5.
    D. Q. M. Craig andJ. M. Newton,Int. J. Pharm. 76 (1991) 17.CrossRefGoogle Scholar
  6. 6.
    R. M. Hill andA. K. Jonscher,Contemp. Phys. 24 (1983) 75.CrossRefGoogle Scholar
  7. 7.
    R. M. Hill andC. Pickup,J. Mater. Sci. 20 (1985) 4431.CrossRefGoogle Scholar
  8. 8.
    J. S. Binns, D. Q. M. Craig, R. M. Hill, M. C. Davies, C. D. Melia andJ. M. Newton,J. Mater. Chem. 2 (1992) 545.CrossRefGoogle Scholar
  9. 9.
    A. E. Binks andA. Sharples,J. Polym. Sci. Polym. Phys. Ed. 23 (1968) 113.Google Scholar
  10. 10.
    J. J. Fontanella, M. C. Winrwesgill andJ. P. Calame,ibid. 23 (1985) 113.CrossRefGoogle Scholar
  11. 11.
    G. Schwarz,J. Phys. Chem. 66 (1962) 2636.CrossRefGoogle Scholar
  12. 12.
    J. Lyklema, S. S. Dukhin andV. N. Shilov,J. Electroanal. Chem. 143 (1983) 1.CrossRefGoogle Scholar
  13. 13.
    L. A. Dissado andR. M. Hill,Nature 279 (1979) 685.CrossRefGoogle Scholar
  14. 14.
    Idem., J. Chem. Soc., Farad. Trans. 280 (1984) 291.CrossRefGoogle Scholar
  15. 15.
    F. Decossas, A. Moliton andE. Merchal,Eur. Polym. J. 18 (1982) 1075.CrossRefGoogle Scholar
  16. 16.
    S. M. Chatham, PhD thesis, Department of Pharmacy, Chelsea College, University of London (1985).Google Scholar
  17. 17.
    T. Ramdeen, L. A. Dissado andR. M. Hill,J. Chem. Soc., Farad. Trans. 180 (1984) 325.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1993

Authors and Affiliations

  • D. Q. M. Craig
    • 1
  • R. M. Hill
    • 2
  • J. M. Newton
    • 1
  1. 1.Centre for Materials Science, The School of PharmacyUniversity of LondonLondonUK
  2. 2.Department of Physics, Kings College LondonUniversity of LondonLondonUK

Personalised recommendations