Journal of Materials Science

, Volume 28, Issue 7, pp 1963–1972 | Cite as

Modelling of the viscoelastic behaviour of amorphous thermoplastic/glass beads composites based on the evaluation of the complex Poisson's ratio of the polymer matrix

  • A. Agbossou
  • A. Bergeret
  • K. Benzarti
  • N. Alberola


A series of polystyrene/glass beads composites were studied by using dynamic mechanical spectrometry. From experimental data obtained under isothermal conditions, a simulation method of viscoelastic behaviour of amorphous thermoplastics reinforced by glass beads was devised. Such a theoretical approach confirmed the requirement of considering the Poisson's ratio as a complex component over all the temperature range. This could be related to the difference of many powers of ten between the moduli of the two phases. Thus, we suggest in this paper a method to evaluate the complex Poisson's ratio of the matrix. From these results, the influence of filler content on the magnitude of the mechanical relaxation related to the glass transition is taken into account.


Polymer Experimental Data Glass Transition Polymer Matrix Theoretical Approach 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


r, θ, Ψ

Spherical polar coordinates


Stress components


Displacement components


Elastic properties: Lamé constant, shear modulus, Poisson's ratio, bulk modulus and Young's modulus, respectively

c, m, i

Subscripts referring, respectively, to composite material, matrix phase, spherical inclusion phase


Radius at spherical inclusion to matrix interface


Radius at matrix to equivalent homogeneous medium interface

vj orv

Volume fraction of inclusions


Longitudinal and transverse velocities


Mass density of the material


Hydrostatic stress


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Z. Hashin,J. Appl. Mech. 50 (1983) 481.CrossRefGoogle Scholar
  2. 2.
    Idem, ibid. 29 (1962) 143.CrossRefGoogle Scholar
  3. 3.
    R. Hill,J. Mech. Phys. Solids 13 (1965) 213.CrossRefGoogle Scholar
  4. 4.
    Z. Hashin andS. Shtrikman,ibid. 11 (1962) 127.CrossRefGoogle Scholar
  5. 5.
    Z. Hashin,Int. J. Solids Struct. 6 (1970) 539.CrossRefGoogle Scholar
  6. 6.
    E. H. Kerner,Proc. Phys. Soc. Lond. 69B (1956) 808.CrossRefGoogle Scholar
  7. 7.
    P. S. Theocaris, in “The mesophase concept in composites” (Springer-Verlag, Berlin, 1987).CrossRefGoogle Scholar
  8. 8.
    M. Takayanagi, K. Imida andT. Kajiyama,J. Polym. Sci. C 15 (1966) 263.CrossRefGoogle Scholar
  9. 9.
    J. C. Halpin andJ. L. Kardos,J. Appl. Phys. 43 (1972) 2235.CrossRefGoogle Scholar
  10. 10.
    R. A. Dickie,J. Appl. Polym. Sci. 17 (1973) 45.CrossRefGoogle Scholar
  11. 11.
    J. D. Ferry, in “Viscoelastic properties of polymers” (Wiley, New York, 1980) p. 558.Google Scholar
  12. 12.
    J. Y. Cavaille, C. Jourdan, J. Perez andJ. Guillot,Makromol. Chem. Makromol. Symp. 23 (1989) 411.CrossRefGoogle Scholar
  13. 13.
    R. A. Dickie,J. Appl. Polym. Sci. 17 (1973) 65.CrossRefGoogle Scholar
  14. 14.
    A. F. Yee andM. T. Takemori,J. Polym. Sci. Polym. Phys. 20 (1982) 205.CrossRefGoogle Scholar
  15. 15.
    H. A. Waterman,Kolloid Z. Z. Polym. 192 (1963) 1.CrossRefGoogle Scholar
  16. 16.
    Idem, ibid. 192 (1963) 9.CrossRefGoogle Scholar
  17. 17.
    Idem, Rheol. Acta 16 (1977) 31.CrossRefGoogle Scholar
  18. 18.
    R. Kono,J. Phys. Soc. Jpn. 15 (1960) 718.CrossRefGoogle Scholar
  19. 19.
    R. M. Christensen andK. H. Lo,J. Mech. Phys. Solids 27 (1979) 315.CrossRefGoogle Scholar
  20. 20.
    J. D. Eshelby, in “Progress in Solid State Physics,” Vol. 3, edited by F. Seitz and D. Turnbull (Academic Press, 1956) p.79.Google Scholar
  21. 21.
    P. Heydemann,Kolloid Z. Z. Polym. 193 (1963) 12.CrossRefGoogle Scholar
  22. 22.
    S. D. Sjoerdsma, A. C. A. M. Bleijenberg andD. Heikens,Polymer 22 (1981) 619.CrossRefGoogle Scholar
  23. 23.
    W. J. Coumans, D. Heikens andS. D. Sjoerdsma,ibid. 21 (1980) 103.CrossRefGoogle Scholar
  24. 24.
    R. Kono,J. Phys. Soc. Jpn. 16 (1961) 1793.CrossRefGoogle Scholar
  25. 25.
    R. J. Crowson andR. G. C. Arridge,Polymer 20 (1979) 737.CrossRefGoogle Scholar
  26. 26.
    J. Y. Cavaille, J. Perez andG. P. Johari,Phys. Rev. B 39 (1989) 2411.CrossRefGoogle Scholar
  27. 27.
    A. Bergeret, A. Agbossou, N. Alberola, P. Cassagnau andT. Sarraf,Eur. Polym. J.,28 (1992) 1201.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1993

Authors and Affiliations

  • A. Agbossou
    • 1
  • A. Bergeret
    • 1
  • K. Benzarti
    • 1
  • N. Alberola
    • 1
  1. 1.Laboratoire Matériaux Composites, ESIGECUniversité de SavoieChambéry CedexFrance

Personalised recommendations