Advertisement

Journal of Materials Science

, Volume 28, Issue 7, pp 1910–1918 | Cite as

The effect of surface-limited microcracks on the effective Young's modulus of ceramics

Part III Experiments
  • Y. Kim
  • E. D. Case
  • S. Gaynor
Papers

Abstract

The effect of aligned Vickers indentation cracks upon the Young's modulus of polycrystalline alumina bars was investigated. The measured Young's modulus for indented specimens was compared with the theoretical predictions based on a variety of models, including a model developed by the authors.

Keywords

Polymer Alumina Theoretical Prediction Vickers Indentation Indentation Crack 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. D. Case andY. Kim,J. Mater. Sci. 28 (1993) 1885.CrossRefGoogle Scholar
  2. 2.
    Idem, ibid. 28 (1993) 1901.CrossRefGoogle Scholar
  3. 3.
    B. Budiansky andR. J. O'connell,Int. J. Solids Struct. 12 (1976) 81.CrossRefGoogle Scholar
  4. 4.
    A. Hoenig,ibid. 15 (1979) 137.CrossRefGoogle Scholar
  5. 5.
    N. Laws andJ. R. Brockenbrough,ibid. 23 (1987) 1247.CrossRefGoogle Scholar
  6. 6.
    H. P. Kirchner andE. D. Issacson,J. Amer. Ceram. Soc. 65 (1982) 55.CrossRefGoogle Scholar
  7. 7.
    H. P. Kirchner,ibid. 67 (1984) 347.CrossRefGoogle Scholar
  8. 8.
    B. L. Symonds, R. F. Cook andB. R. Lawn,J. Mater. Sci. 18 (1983) 1306.CrossRefGoogle Scholar
  9. 9.
    A. G. Evans andE. A. Charles,J. Amer. Ceram. Soc. 59 (1976) 371.CrossRefGoogle Scholar
  10. 10.
    B. R. Lawn andD. B. Marshall,ibid. 62 (1979) 347.CrossRefGoogle Scholar
  11. 11.
    G. R. Anstis, P. Chantikul, B. R. Lawn andD. B. Marshall,ibid. 64 (1981) 533.CrossRefGoogle Scholar
  12. 12.
    F. Forster,Z. Metallkde 29(4) (1937) 109.Google Scholar
  13. 13.
    G. Pickett,ASTM Proc. 45 (1945) 846.Google Scholar
  14. 14.
    D. P. H. Hasselman, “Tables for the Computation of Shear Modulus and Young's Modulus of Elasticity from Resonant Frequencies of Rectangular Prisms” (Carborundum Co., Niagara Falls, New York, 1961).Google Scholar
  15. 15.
    S. Spinner andW. E. Tefft,ASTM Proc. 61 (1961) 1221.Google Scholar
  16. 16.
    Y. Kim, W. J. Lee andE. D. Case, “Reinforced Aluminosilicate Glass Ceramic Composite”, in “Metal and Ceramic Matrix Composites: Processing, Modeling and Mechanical Behavior”, Edited by R. B. Bhagat, A. H. Clauer, P. Kumar and A. M. Ritter (Minerals, Metals and Materials Society, Warrendale, PA, 1990) pp. 479–486.Google Scholar
  17. 17.
    Idem, in Proceedings of 5th Technical Conference, 1990, American Society for Composites (Technomic Press, Lancaster, PA, 1990) pp. 871–881.Google Scholar
  18. 18.
    Y. Kim andE. D. Case,J. Mater. Sci. 27 (1992) 1537.CrossRefGoogle Scholar
  19. 19.
    W. J. Lee andE. D. Case,Mater. Sci. Engng A119 (1989) 113.CrossRefGoogle Scholar
  20. 20.
    Idem, J. Mater. Sci. 25 (1990) 5043.CrossRefGoogle Scholar
  21. 21.
    P. F. Becher, C. Hsueh, P. Angelini andT. N. Tiegs,J. Amer. Ceram. Soc. 71 (1988) 1050.CrossRefGoogle Scholar
  22. 22.
    D. K. Shetty, I. G. Wright, P. N. Mincer andA. H. Clauer,J. Mater. Sci. 20 (1985) 1873.CrossRefGoogle Scholar
  23. 23.
    E. Schreiber, O. L. Anderson andN. Soga, “Elastic Constants and Their Measurements” (McGraw-Hill, New York, 1974) Ch. 4.Google Scholar
  24. 24.
    D. B. Marshall andB. R. Lawn,J. Amer. Ceram. Soc. 63 (1980) 532.CrossRefGoogle Scholar
  25. 25.
    E. R. Fuller, B. R. Lawn andR. F. Cook,ibid. 66 (1983) 314.CrossRefGoogle Scholar
  26. 26.
    C. C. Chiu andE. D. Case,J. Mater. Sci. 27 (1992) 2353.CrossRefGoogle Scholar
  27. 27.
    J. C. Wang,ibid. 19 (1984) 809.CrossRefGoogle Scholar
  28. 28.
    K. K. Phani,J. Mater. Sci. Lett. 15 (1986) 747.CrossRefGoogle Scholar
  29. 29.
    K. K. Phani andS. K. Niyogi,ibid. 5 (1986) 427.CrossRefGoogle Scholar
  30. 30.
    G. Simmons andH. Wang, “Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook”, (MIT Press, Cambridge, Massachusetts, 1971) p. 329.Google Scholar

Copyright information

© Chapman & Hall 1993

Authors and Affiliations

  • Y. Kim
    • 1
  • E. D. Case
    • 1
  • S. Gaynor
    • 1
  1. 1.Department of Metallugry, Mechanics and Materials ScienceMichigan State UniversityEast LansingUSA

Personalised recommendations