Advertisement

Journal of Materials Science

, Volume 28, Issue 7, pp 1901–1909 | Cite as

The effect of surface-limited microcracks on the effective Young's modulus of ceramics

Part II Application of analysis to particular microcrack geometries
  • Y. Kim
  • E. D. Case
Papers

Abstract

This paper considers the details of crack orientation and crack geometry effects on the dynamic modulus model and the rule-of-mixtures model developed in Part I for surface-limited microcracking damage in ceramics. In particular, the implications of using indentation cracks as a model crack system are considered, including accommodation of the hemispherically deformed zone ligament that bridges part of the opposing crack surfaces for indentation crack systems.

Keywords

Polymer Crack Surface Dynamic Modulus Model Crack Crack Orientation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. D. Case andY. Kim,J. Mater. Sci 28 (1993) 1885.CrossRefGoogle Scholar
  2. 2.
    B. Budiansky andR. J. O'connell,Int. J. Solids Struct. 12 (1976) 81.CrossRefGoogle Scholar
  3. 3.
    R. L. Salganik,Mech. Solids 8 (1974) 135.Google Scholar
  4. 4.
    A. Hoenig,Int. J. Solids Struct. 15 (1979) 137.CrossRefGoogle Scholar
  5. 5.
    N. Laws andJ. R. Brockenbrough,ibid. 23 (1987) 1247.CrossRefGoogle Scholar
  6. 6.
    J. R. Willis,Adv. Appl. Mech. 21 (1981) 1.CrossRefGoogle Scholar
  7. 7.
    E. D. Case,J. Mater. Sci. 11 (1984) 3702.CrossRefGoogle Scholar
  8. 8.
    E. D. Case andC. J. Glinka,ibid. 19 (1984) 2962.CrossRefGoogle Scholar
  9. 9.
    J. J. Mecholsky Jr, S. W. Freiman andR. W. Rice,J. Amer. Ceram. Soc. 60 (1977) 114.CrossRefGoogle Scholar
  10. 10.
    H. P. Kirchner,ibid. 67 (1984) 127.CrossRefGoogle Scholar
  11. 11.
    Idem, ibid. 67 (1984) 347.CrossRefGoogle Scholar
  12. 12.
    C. B. Ponton andR. D. Rawlings,Mater. Sci. Tech. 5 (1989) 865.CrossRefGoogle Scholar
  13. 13.
    Idem, ibid. 5 (1989) 961.CrossRefGoogle Scholar
  14. 14.
    K. Niihara, R. Morena andD. P. H. Hasselman,J. Mater. Sci. Lett. 1 (1982) 13.CrossRefGoogle Scholar
  15. 15.
    K. Niihara,ibid. 2 (1983) 221.CrossRefGoogle Scholar
  16. 16.
    J. Lankford,J. Mater. Sci. 16 (1981) 1177.CrossRefGoogle Scholar
  17. 17.
    Idem, J. Mater. Sci. Lett. 1 (1982) 493.CrossRefGoogle Scholar
  18. 18.
    D. K. Shetty, A. R. Rosenfield andW. H. Duckworth,J. Amer. Ceram. Soc. 68 (1985) C-282.CrossRefGoogle Scholar
  19. 19.
    D. K. Shetty, I. G. Wright, P. N. Mincer andA. H. Clauer,J. Mater. Sci. 20 (1985) 1873.CrossRefGoogle Scholar
  20. 20.
    B. R. Lawn andE. R. Fuller,ibid. 10 (1975) 2016.CrossRefGoogle Scholar
  21. 21.
    D. B. Marshall,J. Amer. Ceram. Soc. 66 (1983) 127.CrossRefGoogle Scholar
  22. 22.
    S. S. Smith andB. J. Pletka, in “Fracture Mechanics of Ceramics”, Vol 6., edited by R. C. Bradt, A. G. Evans, F. F. Lange and D. P. H. Hasselman (Plenum, New York, 1983) pp. 189–209.Google Scholar
  23. 23.
    Y. Kim, E. D. Case andS. Gaynor,J. Mater. Sci. 27 (1992) 000.Google Scholar
  24. 24.
    D. P. H. Hasselman andJ. P. Singh,Amer. Ceram. Soc. Bull. 58 (1979) 856.Google Scholar
  25. 25.
    T. Yokobori andM. Ichikawa,J. Phys. Soc. Jpn 19 (1964) 2341.CrossRefGoogle Scholar
  26. 26.
    W. R. Delameter, G. Hermann andD. M. Barnett, Solid by a Rectangular Array of Cracks”,J. Appl. Mech. Trans. ASME,43 (1975) 74.CrossRefGoogle Scholar
  27. 27.
    I. S. Gradshteyn andI. M. Ryzhik, “Table of Integrals, Series and Products”, (Academic, New York, 1980) p. 46.Google Scholar

Copyright information

© Chapman & Hall 1993

Authors and Affiliations

  • Y. Kim
    • 1
  • E. D. Case
    • 1
  1. 1.Department of Metallurgy, Mechanics and Materials ScienceMichigan State UniversityEast LansingUSA

Personalised recommendations