Advertisement

Journal of Materials Science

, Volume 28, Issue 7, pp 1885–1900 | Cite as

The effect of surface-limited microcracks on the effective Young's modulus of ceramics

Part I Analysis
  • E. D. Case
  • Y. Kim
Papers

Abstract

Two types of composite layer model were used to characterize the surface-limited microcrack damage: (i) a dynamic modulus model and (ii) a rule-of-mixtures model. Each model can be applied to either one or two microcracked surface layers for all physically meaningful values of the relative thickness of the layer(s) and all physically meaningful values of the microcrack damage severity states. The microcrack severity can be described in terms of known functions of microcrack size, number density and orientation. A second paper will deal with the details of applying the models to microcracks of a particular geometry, while a third paper deals with experimental tests of the models presented here.

Keywords

Polymer Surface Layer Experimental Test Damage Severity Layer Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Kim, W. J. Lee andE. D. Case, in “Metal and Ceramic Matrix Composites: Processing, Modeling and Mechanical Behavior”, edited by R. B. Bhagat, A. H. Clauer, P. Kumar and A. M. Ritter (Minerals, Metals and Materials Society, Warrendale, PA, 1990) pp. 479–86.Google Scholar
  2. 2.
    Idem, in Proceedings of 5th Technical Conference, June 12–14 1990, East Lansing, MI, American Society for Composites (Technonic Publishing Co, Lancaster PA 1990) pp. 871–881.Google Scholar
  3. 3.
    W. J. Lee andE. D. Case,Mater. Sci. Engng A119 (1989) 113.CrossRefGoogle Scholar
  4. 4.
    Idem, J. Mater. Sci. 25 (1990) 5043.CrossRefGoogle Scholar
  5. 5.
    B. Budiansky andR. J. O'connell,Int. J. Solids Struct. 12 (1976) 81.CrossRefGoogle Scholar
  6. 6.
    A. Hoenig,ibid. 15 (1979) 137.CrossRefGoogle Scholar
  7. 7.
    N. Laws andJ. R. Brockenbrough,ibid. 23 (1987) 1247.CrossRefGoogle Scholar
  8. 8.
    D. P. H. Hasselman andJ. P. Singh,Amer. Ceram. Soc. Bull. 58 (1979) 856.Google Scholar
  9. 9.
    T. Yokobori andM. Ichikawa,J. Phys. Soc. Jpn. 19 (1964) 2341.CrossRefGoogle Scholar
  10. 10.
    W. R. Delameter, G. Herrmann andD. M. Barnett, “Solid by a Rectangular Array of Cracks”,J. Appl. Mech, Trans. ASME 43 (1975) 74.CrossRefGoogle Scholar
  11. 11.
    J. J. Mecholsky Jr, S. W. Freiman andR. W. Rice,J. Amer. Ceram. Soc. 60 (1977) 114.CrossRefGoogle Scholar
  12. 12.
    H. P. Kirchner andE. D. Issacson,ibid. 65 (1982) 55.CrossRefGoogle Scholar
  13. 13.
    H. P. Kirchner,ibid. 67 (1984) 127.CrossRefGoogle Scholar
  14. 14.
    Idem, ibid. 67 (1984) 347.CrossRefGoogle Scholar
  15. 15.
    T. J. Larchuk, J. C. Conway Jr andH. P. Kirchner,ibid. 68 (1985) 209.CrossRefGoogle Scholar
  16. 16.
    J. D. B. Veldkamp, N. Hattu andG. deWith, “High Temperature Scratching of Some Brittle Materials”, in “Fracture Mechanics of Ceramics”, Vol. 5, edited by R. C. Bradt, A. G. Evans, D. P. H. Hasselman and F. F. Lange (Plenum, New York, 1983) pp. 121–144.CrossRefGoogle Scholar
  17. 17.
    D. B. Marshall, in “Fracture in Ceramic Materials; Toughening Mechanisms, Machining Damage, Shock”, edited by A. G. Evans (Noyes, Park Ridge, New Jersey, 1984) pp. 190–220.Google Scholar
  18. 18.
    B. R. Lawn, A. G. Evans andD. B. Marshall,J. Amer. Ceram. Soc. 63 (1980) 574.CrossRefGoogle Scholar
  19. 19.
    B. R. Lawn andM. V. Swain,J. Mater. Sci. 10 (1975) 113.CrossRefGoogle Scholar
  20. 20.
    B. R. Lawn andD. B. Marshall,J. Amer. Ceram. Soc. 62 (1979) 347.CrossRefGoogle Scholar
  21. 21.
    G. R. Anstis, P. Chantikul, B. R. Lawn andD. B. Marshall,ibid. 64 (1981) 533.CrossRefGoogle Scholar
  22. 22.
    B. R. Lawn andE. R. Fuller,J. Mater. Sci. 10 (1975) 2016.CrossRefGoogle Scholar
  23. 23.
    D. B. Marshall andB. R. Lawn,ibid. 14 (1979) 2001.CrossRefGoogle Scholar
  24. 24.
    J. F. Kalthoff andD. A. Shockney,J. Appl. Phys. 48 (1977) 986.CrossRefGoogle Scholar
  25. 25.
    A. G. Evans,ibid. 49 (1978) 3304.CrossRefGoogle Scholar
  26. 26.
    E. D. Case, in “Fracture Mechanics of Ceramics”, Vol. 7, edited by R. C. Bradt, A. G. Evans, D. P. H. Hasselman and F. F. Lange (Plenum, New York, 1983) pp. 211–222.Google Scholar
  27. 27.
    E. Case andA. G. Evans, in “Fracture in Ceramic Materials; Toughening Mechanisms, Machining Damage, Shock”, edited by A. G. Evans (Noyes, Park Ridge, New Jersey, 1984) pp. 404–415.Google Scholar
  28. 28.
    Y. Kim andE. D. Case,J. Mater. Sci. 28 (1993) 1901.CrossRefGoogle Scholar
  29. 29.
    Idem, ibid. 28 (1993) 1910.CrossRefGoogle Scholar
  30. 30.
    B. D. Agarwal andL. J. Broutman, “Analysis and Performance of Fiber Composites” (Wiley, New York, 1980) pp. 20–26.Google Scholar
  31. 31.
    M. V. Swain,J. Amer. Ceram. Soc. 73 (1990) 621.CrossRefGoogle Scholar
  32. 32.
    C. C. Chiu andE. D. Case,Mater. Sci. Engng A132 (1991) 39.CrossRefGoogle Scholar
  33. 33.
    E. Volterra andE. C. Zachmanoglou, “Dynamics of Vibrations” (Merrill, Columbus, Ohio, 1965) pp. 321–322.Google Scholar
  34. 34.
    S. K. Clark, “Dynamics of Continuous Elements” (Prentice Hall, Englewood Cliffs, New Jersey, 1972) pp. 75–87.Google Scholar
  35. 35.
    S. P. Timoshenko andD. H. Young, “Strength of Materials”, 4th Edn (Van Nostrand, Reinhold, Princeton, 1962) pp. 113–115.Google Scholar

Copyright information

© Chapman & Hall 1993

Authors and Affiliations

  • E. D. Case
    • 1
  • Y. Kim
    • 1
  1. 1.Department of Metallurgy, Mechanics and Materials ScienceMichigan State UniversityEast LansingUSA

Personalised recommendations