Advertisement

Journal of Materials Science

, Volume 28, Issue 7, pp 1843–1848 | Cite as

Influence of the phase compositions on the transient-stage high-temperature oxidation behaviour of an NiCoCrAlY coating material

  • S. Sacré
  • U. Wienstroth
  • H. -G. Feller
  • L. K. Thomas
Papers

Abstract

The oxidation behaviour of a commercial NiCoCrAlY coating material (H. C. Starck Inc.; Amperit 410) was investigated in the temperature range 850–1200°C. The measurements were made in air under isothermal and cyclic conditions. The oxidation process was quantified by thermogravimetry. The oxide compositions were characterized by energy-dispersive X-ray analysis (EDX), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and secondary-ion mass spectroscopy (SIMS). The corresponding oxide morphologies were studied by scanning electron microscopy (SEM). This study was focused on the oxide growth of a NiCoCrAlY alloy at temperatures between 850 and 1200°C up to oxidation periods of 25 h. Complementary information obtained from various surface-sensitive techniques are summarized in a simplified scheme of the oxide growth. The oxidation behaviour in the stated temperature range is explained by the different chromium and aluminium contents of the phases. Yttrium becomes effective at temperatures above 1000°C. The good protective properties of the NiCoCrAlY at temperatures above 1000°C and the fairly poor protection below 950°C are interpreted in terms of alumina formation and chromia formation as rate-determining factors.

Keywords

Yttrium Oxidation Behaviour Oxide Growth Oxidation Period Oxide Composition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. H. Stott,Rep. Prog. Phys. 50 (1987) 861.CrossRefGoogle Scholar
  2. 2.
    G. W. Goward,Mater. Sci. Technol. 2 (1986) 194.CrossRefGoogle Scholar
  3. 3.
    V. Thien, F. Schmitz, W. Slotty andW. Voss,Fresenius Z. Anal. Chem. 319 (1984) 646.CrossRefGoogle Scholar
  4. 4.
    R. Bürgel, H. W. Grünling andK. Schneider,Werkstoffe Korros. 38 (1987) 549.CrossRefGoogle Scholar
  5. 5.
    A. Kumar, M. Nasrallah andD. L. Douglas,Oxidation Met. 8 (1974) 227.CrossRefGoogle Scholar
  6. 6.
    J. F. Collins, V. P. Calkins andJ. A. McGarty, in “The Rare Earths and Related Metals” (American Society for Metals, Metals Park, Ohio, 1960) p. 499.Google Scholar
  7. 7.
    A. M. Kuntz,Mater. Sci. Engng 87 (1987) 251.CrossRefGoogle Scholar
  8. 8.
    St Mrowec, A. Gil andA. Jedlinski,Werkstoffe Korros. (1987) 563.Google Scholar
  9. 9.
    H. -D. Steffens, in “Coatings for High Temperature Applications”, edited by E. Lang (Applied Science Publishers, London, 1983) p. 121.Google Scholar
  10. 10.
    R. Bürgel,VDI-Berichte 624 (1986) 185.Google Scholar
  11. 11.
    A. M. Huntz,Mater. Sci. Forum 43 (1989) 131.CrossRefGoogle Scholar
  12. 12.
    K. P. Lillerud andP. Kofstad,J. Electrochem. Soc. 127 (1980) 2397.CrossRefGoogle Scholar
  13. 13.
    H. Hindam andD. P. Whittle,Oxidation Met. 18 (1983) 245.CrossRefGoogle Scholar
  14. 14.
    C. D. Wagner, W. M. Riggs, L. E. Davis andJ. F. Moulder, in “Handbook of X-ray Photoelectron Spectroscopy”, edited by G. E. Muilenberg (Perkin-Elmer Corporation, Eden Prairie, Minnesota, 1979) 27.Google Scholar
  15. 15.
    S. Sacre, U. Wienstroth, H. -G. Feller andL. K. Thomas,Mater. Sci. Engng A145 (1991) L23.CrossRefGoogle Scholar
  16. 16.
    K. Przybylski andG. J. Yurek,Mater. Sci. Forum 43 (1989) 1.CrossRefGoogle Scholar
  17. 17.
    I. M. Allam, D. P. Whittle andJ. Stringer,Oxidation Met. 12 (1978) 35.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1993

Authors and Affiliations

  • S. Sacré
    • 1
  • U. Wienstroth
    • 1
  • H. -G. Feller
    • 1
  • L. K. Thomas
    • 1
  1. 1.Institut für Metallforschung der TU BerlinBerlinGermany

Personalised recommendations