Advertisement

Journal of Materials Science

, Volume 28, Issue 7, pp 1824–1828 | Cite as

Thermal evolution of Co1−x-Px electrodeposited ribbons and its influence on the electrical resistivity

  • F. Branda
  • L. Lanotte
  • A. Costantini
  • P. Matteazzi
Papers

Abstract

Co-P ribbons have been obtained by electrodeposition on aluminium substrates. The effect of changing the current density (in the range 8–19 A dm−2) and the H3PO3 concentration on the nature of the phases present in the “as-prepared” samples and their thermal evolution has been studied by X-ray diffraction analysis and differential scanning calorimetry. Amorphous and crystalline (fully or partly) products have been obtained, by changing the bath composition. Devitrification of the initially amorphous samples leads to cobalt (in the hexagonal and/or cubic form) and cobalt phosphide (Co2P) crystalline phases. A devitrification mechanism has been proposed. The presence of two amorphous phases in the glassy samples and the possibility of obtaining intermediate samples with crystalline and amorphous phases intermixed with each other, is suggested from the experimental results. The electrical resistivities of the products obtained have been measured. They are affected by the phosphorus content and develop after thermal treatments, in agreement with both microstructure changes and the nature of the crystalline cobalt phases formed.

Keywords

Cobalt Differential Scanning Calorimetry Electrical Resistivity Amorphous Phasis H3PO3 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. W. Cochrane andG. S. Cargill,Phys. Rev. Lett. 32 (1974) 476.CrossRefGoogle Scholar
  2. 2.
    D. Pan andD. Turnbull,J. Appl. Phys. 45 (1974) 1406.CrossRefGoogle Scholar
  3. 3.
    G. Diez andH. Destgen,J. Magn. Magn. Mater. 19 (1980) 157.CrossRefGoogle Scholar
  4. 4.
    K. Huller andG. Diez,ibid. 50 (1985) 250.CrossRefGoogle Scholar
  5. 5.
    J. M. Riveiro, G. Riveiro andM. C. Sancheztrujillo,ibid. 58 (1986) 235.CrossRefGoogle Scholar
  6. 6.
    A. Brenner, “Electrodeposition of alloys”, Vol. 2 (Academic Press, London, New York, 1963) Ch. 35.Google Scholar
  7. 7.
    K. Huller, M. Sydow andG. Diez,J. Magn. Mater. 53 (1985) 269.CrossRefGoogle Scholar
  8. 8.
    L. Lanotte, P. Matteazzi andV. Tagliaferri,Mater. Sci. Tech. 6 (1990)Google Scholar
  9. 9.
    T. Kemény andJ. Sestak. “Comparison of crystallization kinetics determined by isothermal and non-isothermal methods”, Budapest 1985.Google Scholar
  10. 10.
    P. H. Herman andA. Weidinger,Macromol. Chim. 44 (1961) 24.CrossRefGoogle Scholar
  11. 11.
    A. Benedetti, G. Cocco, G. Fagherazzi, B. Locardi andS. Meriani,J. Mater. Sci. 18 (1983) 1039.CrossRefGoogle Scholar
  12. 12.
    K. Masui, T. Yamada andY. Hisamatsu,J. Jpn Inst. Metals 44 (1980) 651.CrossRefGoogle Scholar
  13. 13.
    L. Lanotte andC. Luponio,J. Magn. Magn. Mater. (1991) 2006.Google Scholar
  14. 14.
    P. Lamparter andS. Steeb.J. Non-Cryst. Solids 106 (1988) 137.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1993

Authors and Affiliations

  • F. Branda
    • 1
  • L. Lanotte
    • 1
    • 2
  • A. Costantini
    • 1
  • P. Matteazzi
    • 3
  1. 1.Dipartimento di Ingegneria dei Materiali e delta ProduzionePiazzale TecchioNapoliItaly
  2. 2.Dipartimento di Scienze Fisiche, unità CINFM, Facoltà di IngegneriaPiazzale TecchioNapoliItaly
  3. 3.Facoltà di IngegneriaIstituto di ChimicaUdineItaly

Personalised recommendations