Advertisement

Journal of Materials Science

, Volume 28, Issue 7, pp 1814–1818 | Cite as

The relationship between ductility and material parameters for dual-phase steel

  • Zhonghao Jiang
  • Zhenzhong Guan
  • Jianshe Lian
Papers

Abstract

A modified Crussard-Jaoul analysis has been employed to describe the strain hardening behaviour (the ln(dσ/dε) versus In σ curves) of a 1020 dual-phase steel with quenching and quenching+tempering treatments and with different predeformations, which demonstrated that this dual-phase steel exhibits two stages of strain-hardening in the range of plastic deformation. An analysis of instability for dual-phase steel is also presented and the relationship between the maximum uniform strain and the material parameters is proposed, which shows good agreement with the experimental results for the present 1020 dual-phase steel and other dual-phase steels.

Keywords

Polymer Plastic Deformation Ductility Strain Hardening Material Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. C. Goel, S. Sangal andK. Tangri,Metall. Trans. A 16 (1985) 2013.CrossRefGoogle Scholar
  2. 2.
    S. Ankem andH. Margolin,ibid. 14 (1983) 500.CrossRefGoogle Scholar
  3. 3.
    C. Kim,ibid. 19 (1988) 1263.CrossRefGoogle Scholar
  4. 4.
    K. Cho andJ. Gurland,ibid. 19 (1988) 2027.CrossRefGoogle Scholar
  5. 5.
    Y. Tomita andK. Okabayashi,ibid. 16 (1985) 865.CrossRefGoogle Scholar
  6. 6.
    F. H. Samel,Mater. Sci. Engng 92 (1987) L1.CrossRefGoogle Scholar
  7. 7.
    R. D. Lawson, D. K. Matlock andG. Krauss, in “Fundamentals of Dual Phase Steel,” edited by R. A. Kot and B. L. Bramfitt (TMS-AIME, New York, 1981) p. 437.Google Scholar
  8. 8.
    W. R. Cribb andJ. M. Rigsbee, in “Structure and Properties of Dual Phase Steels”, edited by R. A. Kot and J. W. Morris (TMS-AIME, New York, 1979) p. 91.Google Scholar
  9. 9.
    C. Crussard,Rev. Metall. 50 (1953) 697.CrossRefGoogle Scholar
  10. 10.
    B. Jaoul,J. Mech. Phys. Solids 5 (1957) 95.CrossRefGoogle Scholar
  11. 11.
    R. E. Reed-Hill, W. R. Cribb andS. N. Monteiro,Metall. Trans. A 4 (1973) 2665.CrossRefGoogle Scholar
  12. 12.
    F. A. Nichols,Acta Metall. 28 (1980) 633.CrossRefGoogle Scholar
  13. 13.
    J. Lian,Chin. J. Mech. Eng. 18 (4) (1982) 21.Google Scholar
  14. 14.
    J. Lian andB. Baudelet,Mater. Sci. Engng 84 (1986) 157.CrossRefGoogle Scholar
  15. 15.
    S. L. Semiatin andJ. J. Jonas, “Formability and Workability of Metals” (ASM, Metals Park, Ohio, 1984), p. 155.Google Scholar
  16. 16.
    A. Considere,Ann. Ponts. Ch. Ser. 69 (1885) 574.Google Scholar
  17. 17.
    A. K. Ghosh,Metall. Trans. A 8 (1977) 1221.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1993

Authors and Affiliations

  • Zhonghao Jiang
    • 1
  • Zhenzhong Guan
    • 1
    • 2
  • Jianshe Lian
    • 1
  1. 1.Department of Metal Materials EngineeringJilin University of TechnologyChangchunPeople’s Republic of China
  2. 2.Changchun Institute of Optics and Fine MechanicsChinese Academy of SciencesChangchunPeople’s Republic of China

Personalised recommendations